EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and Global Analysis of Spacecraft Attitude Control Systems

Download or read book Design and Global Analysis of Spacecraft Attitude Control Systems written by George Meyer and published by . This book was released on 1971 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general procedure for the design and analysis of three-axis, large-angle attitude control systems has been developed. Properties of three-dimensional rotations are used to formulate a model of such systems. The model is general in that it is based on those properties which are common to all attitude control systems, rather than on special properties of particular components. Numerical values are assigned to attitude error by means of error functions. These functions are used to construct asymptotically stable control laws. The overall (global) behavior of the system is characterized by the envelope of all time histories of attitude error generated by every possible combination of initial condition, target attitude motion, and disturbance. A method for computing upper bounds on the response envelope is presented. Applications of this method indicate that it provides a useful alternative to Liapunov analysis for the determination of system stability, responsiveness, and sensitivity to disturbances, parameter variations, and target attitude motion.

Book Fast Satellite Attitude Maneuver and Control

Download or read book Fast Satellite Attitude Maneuver and Control written by Dong Ye and published by Academic Press. This book was released on 2022-08-02 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fast Satellite Attitude Maneuver and Control introduces the concept of agile satellites and corresponding fast maneuver attitude control systems, systematically and comprehensively presenting recent research results of fast maneuver attitude control for agile satellites by using advanced nonlinear control techniques. This reference book focuses on modeling and attitude control, considering different actuator combinations, actuator installation deviation, actuator fault, and flexible appendage coupling effect for agile satellites. The book provides a unified platform for understanding and applicability of agile satellites fast maneuverer and stabilization control for different purposes. It will be an excellent resource for researchers working on spacecraft design, nonlinear control systems, vehicle systems and complex control systems. Unifies existing and emerging concepts concerning nonlinear control theory, fault tolerant, and attitude control for agile satellites Provides a series of the latest results, including, but not limited to, fast maneuverer and stabilization control, hybrid actuator control, nonlinear attitude control, fault tolerant control, and active vibration suppression towards agile satellites Comprehensively captures recent advances of theory, technological aspects and applications of fast maneuverer and stabilization control in agile satellites Addresses research problems in each chapter, along with numerical and simulation results that reflect engineering practice and demonstrate the focus of developed analysis and synthesis approaches Contains comprehensive, up-to-date references, which play an indicative role for further study

Book Studies in Satellite Attitude Control System Design

Download or read book Studies in Satellite Attitude Control System Design written by Manchi Umesh Rao and published by . This book was released on 1979 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book ADCS   Spacecraft Attitude Determination and Control

Download or read book ADCS Spacecraft Attitude Determination and Control written by Michael Paluszek and published by Elsevier. This book was released on 2023-04-27 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: ADCS - Spacecraft Attitude Determination and Control provides a complete introduction to spacecraft control. The book covers all elements of attitude control system design, including kinematics, dynamics, orbits, disturbances, actuators, sensors, and mission operations. Essential hardware details are provided for star cameras, reaction wheels, sun sensors, and other key components. The book explores how to design a control system for a spacecraft, control theory, and actuator and sensor details. Examples are drawn from the author’s 40 years of industrial experience with spacecraft such as GGS, GPS IIR, Mars Observer, and commercial communications satellites, and includes historical background and real-life examples. Features critical details on hardware and the space environment Combines theory and ready-to-implement practical algorithms Includes MATLAB code for all examples Provides plots and figures generated with the included code

Book Spacecraft Attitude Determination and Control

Download or read book Spacecraft Attitude Determination and Control written by J.R. Wertz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 877 pages. Available in PDF, EPUB and Kindle. Book excerpt: Roger D. Werking Head, Attitude Determination and Control Section National Aeronautics and Space Administration/ Goddard Space Flight Center Extensiye work has been done for many years in the areas of attitude determination, attitude prediction, and attitude control. During this time, it has been difficult to obtain reference material that provided a comprehensive overview of attitude support activities. This lack of reference material has made it difficult for those not intimately involved in attitude functions to become acquainted with the ideas and activities which are essential to understanding the various aspects of spacecraft attitude support. As a result, I felt the need for a document which could be used by a variety of persons to obtain an understanding of the work which has been done in support of spacecraft attitude objectives. It is believed that this book, prepared by the Computer Sciences Corporation under the able direction of Dr. James Wertz, provides this type of reference. This book can serve as a reference for individuals involved in mission planning, attitude determination, and attitude dynamics; an introductory textbook for stu dents and professionals starting in this field; an information source for experimen ters or others involved in spacecraft-related work who need information on spacecraft orientation and how it is determined, but who have neither the time nor the resources to pursue the varied literature on this subject; and a tool for encouraging those who could expand this discipline to do so, because much remains to be done to satisfy future needs.

Book Fundamentals of Spacecraft Attitude Determination and Control

Download or read book Fundamentals of Spacecraft Attitude Determination and Control written by F. Landis Markley and published by Springer. This book was released on 2014-05-31 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitude dynamics including Jacobian elliptical functions. It is the first known book to provide detailed derivations and explanations of state attitude determination and gives readers real-world examples from actual working spacecraft missions. The subject matter is chosen to fill the void of existing textbooks and treatises, especially in state and dynamics attitude determination. MATLAB code of all examples will be provided through an external website.

Book Studies in Satellite Attitude Control System Design

Download or read book Studies in Satellite Attitude Control System Design written by Manchi Umesh Rao and published by . This book was released on 1979 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Attitude Control of Satellite

Download or read book Advanced Attitude Control of Satellite written by Bing Xiao and published by Springer Nature. This book was released on with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Commercial Satellite Launch Vehicle Attitude Control Systems Design and Analysis  H infinity  Loop Shaping  and Coprime Approach

Download or read book Commercial Satellite Launch Vehicle Attitude Control Systems Design and Analysis H infinity Loop Shaping and Coprime Approach written by Chong Hun Kim and published by Lulu.com. This book was released on 2007 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written for aerospace engineers who have completed their BS degree and are interested in the design and analysis of rocket attitude control systems. It introduces a new approach to the design, characterized by its robustness. Current LV attitude control systems are designed based on classical SISO control theory, and they lack robustness. The theory used here truly offers a technique that enables us to design control systems that are reasonably insensitive to math modeling errors and can withstand disturbances such as gust, and in addition it doesn’t need external states estimator, such as Kalman filtering. Extensive simulation results, which demonstrate the effectiveness of this approach, are presented in this book. Basic rocket theory and a concept of H-infinity control system design technique are explained for those who are new in these fields of study.

Book Spacecraft Attitude Control

Download or read book Spacecraft Attitude Control written by Chuang Liu and published by Elsevier. This book was released on 2022-01-31 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance. Considers the control requirements of modern spacecraft Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems Includes a systematic survey of recent research in spacecraft attitude control

Book Attitude Stablization for CubeSat

Download or read book Attitude Stablization for CubeSat written by Mohammed Chessab Mahdi and published by . This book was released on 2018 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores CubeSat technology, and develops a nonlinear mathematical model of a spacecraft with the assumption that the satellite is a rigid body. It places emphasis on the CubeSat subsystem, orbit dynamics and perturbations, the satellite attitude dynamic and modeling, and components of attitude determination and the control subsystem. The book focuses on the attitude stabilization methods of spacecraft, and presents gravity gradient stabilization, aerodynamic stabilization, and permanent magnets stabilization as passive stabilization methods, and spin stabilization and three axis stabilization as active stabilization methods. It also discusses the need to develop a control system design, and describes the design of three controller configurations, namely the ProportionalIntegralDerivative Controller (PID), the Linear Quadratic Regulator (LQR), and the Fuzzy Logic Controller (FLC) and how they can be used to design the attitude control of CubeSat three-axis stabilization. Furthermore, it presents the design of a suitable attitude stabilization system by combining gravity gradient stabilization with magnetic torquing, and the design of magnetic coils which can be added in order to improve the accuracy of attitude stabilization. The book then investigates, simulates, and compares possible controller configurations that can be used to control the currents of magnetic coils when magnetic coils behave as the actuator of the system.

Book Spacecraft Dynamics and Control

Download or read book Spacecraft Dynamics and Control written by Enrico Canuto and published by Butterworth-Heinemann. This book was released on 2018-03-08 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems. The book begins with an extensive introduction to attitude geometry and algebra and ends with the core themes: state-space dynamics and Embedded Model Control Fundamentals of orbit, attitude and environment dynamics are treated giving emphasis to state-space formulation, disturbance dynamics, state feedback and prediction, closed-loop stability Sensors and actuators are treated giving emphasis to their dynamics and modelling of measurement errors. Numerical tables are included and their data employed for numerical simulations Orbit and attitude control problems of the European GOCE mission are the inspiration of numerical exercises and simulations The suite of the attitude control modes of a GOCE-like mission is designed and simulated around the so-called mission state predictor Solved and unsolved exercises are included within the text - and not separated at the end of chapters - for better understanding, training and application Simulated results and their graphical plots are developed through MATLAB/Simulink code

Book Feasibility Study of Optimum On off Attitude Control System for Spacecraft

Download or read book Feasibility Study of Optimum On off Attitude Control System for Spacecraft written by John D. Regetz (Jr.) and published by . This book was released on 1968 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Satellite Formation Flying

Download or read book Satellite Formation Flying written by Danwei Wang and published by Springer. This book was released on 2016-10-24 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically describes the concepts and principles for multi-satellite relative motion, passive and near passive formation designs, trajectory planning and control for fuel optimal formation maneuvers, and formation flying maintenance control design. As such, it provides a sound foundation for researchers and engineers in this field to develop further theories and pursue their implementations. Though satellite formation flying is widely considered to be a major advance in space technology, there are few systematic treatments of the topic in the literature. Addressing that gap, the book offers a valuable resource for academics, researchers, postgraduate students and practitioners in the field of satellite science and engineering.

Book Advanced Attitude Control of Satellite

Download or read book Advanced Attitude Control of Satellite written by Bing Xiao and published by Springer. This book was released on 2024-07-16 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the high-accuracy attitude control system design and approaches for satellite with modeling error including system uncertainties, actuator faults, and disturbances. It presents a systematically and almost self-contained description of the many facets of envisaging, designing, implementing, or experimentally exploring modeling error compensation-based attitude control of satellites. The advanced treatment of practical issues in satellite attitude compensation control is one of the major features of the book, which is particularly suited for readers who are interested to learn the latest solutions in attitude control system design of satellites. The book intends to provide a unified platform for understanding and applicability of the modeling error compensation-based attitude control for different purposes in aerospace engineering and some related fields. It can benefit researchers, engineers, and graduate students in the fields of attitude control of satellites and other unmanned systems, aerospace engineering, etc.

Book Fault Tolerant Attitude Estimation for Small Satellites

Download or read book Fault Tolerant Attitude Estimation for Small Satellites written by Chingiz Hajiyev and published by CRC Press. This book was released on 2020-12-23 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small satellites use commercial off-the-shelf sensors and actuators for attitude determination and control (ADC) to reduce the cost. These sensors and actuators are usually not as robust as the available, more expensive, space-proven equipment. As a result, the ADC system of small satellites is more vulnerable to any fault compared to a system for larger competitors. This book aims to present useful solutions for fault tolerance in ADC systems of small satellites. The contents of the book can be divided into two categories: fault tolerant attitude filtering algorithms for small satellites and sensor calibration methods to compensate the sensor errors. MATLAB® will be used to demonstrate simulations. Presents fault tolerant attitude estimation algorithms for small satellites with an emphasis on algorithms’ practicability and applicability Incorporates fundamental knowledge about the attitude determination methods at large Discusses comprehensive information about attitude sensors for small satellites Reviews calibration algorithms for small satellite magnetometers with simulated examples Supports theory with MATLAB simulation results which can be easily understood by individuals without a comprehensive background in this field Covers up-to-date discussions for small satellite attitude systems design Dr. Chingiz Hajiyev is a professor at the Faculty of Aeronautics and Astronautics, Istanbul Technical University (Istanbul, Turkey). Dr. Halil Ersin Soken is an assistant professor at the Aerospace Engineering Department, Middle East Technical University (Ankara, Turkey).