EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Structure and Hydrogen Bond Network Rearrangement Dynamics of Small Water Clusters

Download or read book Structure and Hydrogen Bond Network Rearrangement Dynamics of Small Water Clusters written by Kun Liu and published by . This book was released on 1996 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spectroscopic Investigations of Hydrogen Bond Network Structures in Water Clusters

Download or read book Spectroscopic Investigations of Hydrogen Bond Network Structures in Water Clusters written by Kenta Mizuse and published by Springer Science & Business Media. This book was released on 2013-01-22 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: The properties and nature of water clusters studied with novel spectroscopic approaches are presented in this thesis. Following a general introduction on the chemistry of water and water clusters, detailed descriptions of the experiments and analyses are given. All the experimental results, including first size-selective spectra of large clusters consisting of 200 water molecules, are presented with corresponding analyses. Hitherto unidentified hydrogen bond network structures, dynamics, and reactivity of various water clusters have been characterized at the molecular level. The main targets of this book are physical chemists and chemical physicists who are interested in water chemistry or cluster chemistry.

Book Visualization of Hydrogen Bond Dynamics

Download or read book Visualization of Hydrogen Bond Dynamics written by Takashi Kumagai and published by Springer Science & Business Media. This book was released on 2012-09-02 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: The hydrogen bond represents an important interaction between molecules, and the dynamics of hydrogen bonds in water create an ever-present question associated with the process of chemical and biological reactions. In spite of numerous studies, the process remains poorly understood at the microscopic level because hydrogen-bond dynamics, such as bond rearrangements and hydrogen/proton transfer reactions, are extremely difficult to probe. Those studies have been carried out by means of spectroscopic methods where the signal stems from the ensemble of a system and the hydrogen-bond dynamics were inferred indirectly. This book addresses the direct imaging of hydrogen-bond dynamics within water-based model systems assembled on a metal surface, using a scanning tunneling microscope (STM). The dynamics of individual hydrogen bonds in water clusters, hydroxyl clusters, and water-hydroxyl complexes are investigated in conjunction with density functional theory. In these model systems, quantum dynamics of hydrogen bonds, such as tunneling and zero-point nuclear motion, are observed in real space. Most notably, hydrogen atom relay reactions, which are frequently invoked across many fields of chemistry, are visualized and controlled by STM. This work presents a means of studying hydrogen-bond dynamics at the single-molecule level, providing an important contribution to wide fields beyond surface chemistry.

Book Spectroscopic Investigations of Hydrogen Bond Network Structures in Water Clusters

Download or read book Spectroscopic Investigations of Hydrogen Bond Network Structures in Water Clusters written by Springer and published by . This book was released on 2013-01-22 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development and Analysis of Computational Methods to Study Hydrogen Bonding in Molecular Clusters

Download or read book Development and Analysis of Computational Methods to Study Hydrogen Bonding in Molecular Clusters written by Ryan J. DiRisio and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the role of hydrogen bonding in the structure and dynamics of water is an ongoing challenge in physical chemistry. In particular, understanding how the quantum mechanical effects of molecular vibrations govern the structure and dynamics of water is of interest. The cornerstone method used to study this phenomenon in this work is Diffusion Monte Carlo (DMC), which can be used to obtain the ground state vibrational wave function of any arbitrary molecule or molecular cluster. Instead of attempting to model bulk water and its properties outright, small, gas-phase molecular and ionic clusters of water, which provide model systems to study hydrogen bonding and proton transfer, are studied. To begin, DMC will be reviewed, and PyVibDMC, an open source, general purpose Python DMC software package developed as part of this work, will be discussed. As DMC is rigorously a ground state method, extensions to the DMC approach are required to obtain information about excited states. With excited state information, one can then directly compare simulation to experiment through theoretical and experimental spectroscopy. As such, next, the Ground State Probability Amplitude (GSPA) approximation is presented, and it is applied to protonated water clusters. In the GSPA approach, excited state wave functions are approximated based on simple products of polynomials of vibrational displacements with the ground state DMC wave function. The power of this approach is that one can construct a small basis through which to comprehensively examine the vibrational state space of the chemical system of interest. Extensions to the GSPA approach that incorporate excited state mixing and improved descriptions of higher-order excited states states will be presented as well. These improvements lead to good agreement between the GSPA theoretical and gas-phase experimental vibrational spectra of H7O3+ and H9O4+. Using this rich theoretical approach, we are able to draw connections between the molecular vibrations and structures that govern proton transfer and experimental spectroscopy of the clusters. A methodological procedure is presented next, which is the incorporation of machine learning into the DMC workflow. A potential energy surface is required for DMC simulations. Performing on-the-fly, ab initio potential energy calculations of molecular configurations in DMC simulations for systems beyond a few atoms is computationally intractable. As such, fitted potential energy surfaces are often employed for DMC simulations. However, as systems of interest increase in size, even the evaluations of these fitted surfaces become computationally demanding. To this end, a workflow is developed to use the large amount of data obtained from a small-scale DMC simulation to train a neural network to learn the potential energy surface of interest. Neural network structure, choice of descriptor, and hyperparameter optimization are reviewed and discussed in the context of other machine learning methods, and training data collection strategies are discussed, including the need to sample regions of the potential energy surface that are beyond regions accessed by a typical DMC simulation. Once the neural network surface is trained, it is evaluated in an extremely fast and highly-parallel manner, making DMC simulations significantly more efficient for H2O, CH5+, and (H2O)2. In the final section, DMC is set aside, and an exploration of the correlation between the vibrational spectral signature of an individual water molecule with its surrounding chemical environment is discussed. Specifically, the frequency of a hydrogen-bonded OH stretch in a water dimer pair is correlated to the number of solvating water molecules surrounding it. A quantum mechanical model is constructed to quantify this correlation, and applications of the model to a sample water cluster show the causality between the change in quantum mechanical electron density in the hydrogen bonding region of a particular OH bond and its OH stretch frequency. The application of the quantum model formalizes and explains empirical trends and categorization approaches put forth in previous work to characterize hydrogen bonding environments. This model is then applied to the water network found in a Cs+(H2O)20 cluster, where these trends are again quantified and then related to both the first and second solvation shell of a hydrogen-bond donor/acceptor water pair within the larger network.

Book Hydrogen Bond Networks

    Book Details:
  • Author : M.C. Bellissent-Funel
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 9401583323
  • Pages : 564 pages

Download or read book Hydrogen Bond Networks written by M.C. Bellissent-Funel and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: The almost universal presence of water in our everyday lives and the very `common' nature of its presence and properties possibly deflects attention from the fact that it has a number of very unusual characteristics which, furthermore, are found to be extremely sensitive to physical parameters, chemical environment and other influences. Hydrogen-bonding effects, too, are not restricted to water, so it is necessary to investigate other systems as well, in order to understand the characteristics in a wider context. Hydrogen Bond Networks reflects the diversity and relevance of water in subjects ranging from the fundamentals of condensed matter physics, through aspects of chemical reactivity to structure and function in biological systems.

Book The Hydrogen Bond and the Water Molecule

Download or read book The Hydrogen Bond and the Water Molecule written by Yves Marechal and published by Elsevier. This book was released on 2006-12-11 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Hydrogen Bond and the Water Molecule offers a synthesis of what is known and currently being researched on the topic of hydrogen bonds and water molecules. The most simple water molecular, H2O, is a fascinating but poorly understood molecule. Its unique ability to attract an exceptionally large number of hydrogen bonds induces the formation of a dense "hydrogen bond network" that has the potential to modify the properties of the surrounding molecules and their reactivities. The crucial role that water molecules play is described in this book. The author begins by providing an overview of the thermodynamical and structural properties of H-bonds before examining their much less known dynamical properties, which makes them appear as centres of reactivity. Methods used to observe these components are also reviewed. In the second part of the book the role played by the dense H-bond network developed by H2O molecules is examined. First in ice, where it has important atmospheric consequences, then in liquid water, and finally in macromolecules where it sheds some original light on the fundamental question "How is it that without water and hydrogen bonds life would not exist?". This book will be of interest to researchers in the fields of physics, chemistry, biochemistry and molecular biology. It can also serve as a teaching aid for students attending course in chemical physics, chemistry or molecular biology. Engineers involved the water industry would benefit from reading this book, as would scientists working in pharmaceutics, cosmetics and materials. * overview of what is known and being researched on the topic of hydrogen bonds and water molecules * reviews methods used to observe interactions between water molecules and hydrogen bonds * examines role of H-bond network developed by H2O molecules

Book Structure and Dynamics of Hydrogen Bonding in the Liquid State of Small Molecules

Download or read book Structure and Dynamics of Hydrogen Bonding in the Liquid State of Small Molecules written by Mark Alan Wendt and published by . This book was released on 1999 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Water Hydrogen Bond Structure and Dynamics in Ionic and Polymeric Aqueous Systems

Download or read book Water Hydrogen Bond Structure and Dynamics in Ionic and Polymeric Aqueous Systems written by Sean Anthony Roget and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water is a simple molecule with many unique physical properties that are critical to life on earth. Its properties arise from its extended hydrogen-bonded network, in which water-water hydrogen bonds are constantly breaking and forming. However, in many biological systems and materials, the water network is impacted by the presence of solutes and interfaces. In this thesis, the structure and dynamics of the hydrogen bond network are examined in technologically relevant materials where water plays a key role. The systems studied include fuel cell membranes, hydrogels and concentrated salt solutions. Nonlinear infrared spectroscopy can be used to experimentally observe ultrafast motions of water as well as its structural configurations within complex chemical systems. Polarization-selective pump-probe experiments on the OD stretch of dilute HOD in water provide information on both orientational and vibrational relaxation. Orientational relaxation describes the reorientation dynamics of water molecules in the hydrogen bond network. If angular diffusion is restricted, orientational relaxation also provides insight into how water may be sterically hindered within its environment. Vibrational relaxation describes coupling of vibrational energy absorbed by the HOD molecules to its surrounding media. The vibrational lifetime provides details on the local interactions of HOD and may allow separation of distinct dynamics near different species. Two-dimensional vibrational echo experiments on HOD molecules observe the time scales for structural evolution of the surrounding environment through ultrafast vibrational frequency fluctuations. With these experimental techniques, a holistic picture of the structure and motions of the water hydrogen bond network can be acquired.

Book VRT Spectroscopy and Hydrogen Bond Breaking Dynamics in Water Clusters

Download or read book VRT Spectroscopy and Hydrogen Bond Breaking Dynamics in Water Clusters written by Frank Norman Keutsch and published by . This book was released on 2001 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Hydrogen bond Network of Water Supports Propagating Optical Phonon like Modes

Download or read book The Hydrogen bond Network of Water Supports Propagating Optical Phonon like Modes written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Lastly, our results indicate the dynamics of liquid water have more similarities to ice than previously thought.

Book Unravelling the Ultrafast Dynamics of Aqueous Hydrogen Bond Networks with 2D IR Vibrational Echo Spectroscopy

Download or read book Unravelling the Ultrafast Dynamics of Aqueous Hydrogen Bond Networks with 2D IR Vibrational Echo Spectroscopy written by Rongfeng Yuan and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Water is one of the most important substances in the world. It is used in a wide range of technologies and is an essential ingredient in all living cells we know today. The structure of water molecule is simple, yet it can form extended and versatile hydrogen bond (HB) network. This ability gives water extraordinary properties, such as high boiling and melting point. At the same time, the hydrogen bond network is not static. The constant breaking and re-forming of hydrogen bond occurs on the picosecond timescale. This dynamic network facilitates many functions of water, including ions solvation, protein folding and electricity conduction. Understanding the structure and dynamics of these processes is therefore of great importance. Ultrafast infrared (IR) spectroscopies offer a great method for accessing the sub-picosecond to picoseconds dynamics while a system in an electronic ground state. During the past two decades, hydrogen bond dynamics has been investigated extensively using ultrafast IR spectroscopies. But many questions still exist such as the effect of ions and confinement on the hydrogen bonding dynamics and the relation between the anomalous proton diffusion in dilute solution and hydrogen bonding. In Chapter 3, we examined the nature of molecular anion hydrogen bonding. The CN stretch of selenocyanate anions (SeCN-) was used as the vibrational probe in heavy water D2O. We observed the non-Condon effect on the CN stretch whose transition dipole changes with the strength of hydrogen bonding with water. In addition, HB rearrangement dynamics reported by SeCN- is almost the same as was that of the OH stretch of HOD molecules. This result shows that this anion does not perturb the surrounding HB network significantly in the low salt concentration solution. This ionic perspective is important and complements the results using OD or OH stretch of HOD molecules, which can only probe the effect of ions in a high salt concentration condition. In Chapter 4, we used SeCN- as the probe to examine water dynamics in confinement, and I focused on the nano waterpool formed in reverse micelles. The water pool is surrounded by surfactants which are further solvated by organic hydrophobic solvents. For large reverse micelle whose diameter is larger than 4 nm, the water pool is usually divided into two regions: the core region where water dynamics is like that in pure water and the interface region where water dynamics is slowed significant due to the confinement. Here we used ultrafast IR spectroscopies to measure the orientational relaxation of SeCN-, which reflects its interaction with water molecules and how "rigid" the HB network is. Based on the comparison between linear IR decomposition and ultrafast anisotropy dynamics, we proposed a three-component model of water in large reverse micelles. The interface component should be further separated into two layers. One layer corresponds to water in contact with the surfactant head group and has very slow reorientation. The other layer corresponds to water molecules whose coordinating structure still resembles that of bulk but the dynamics is slowed down due to the perturbation from confinement. In Chapter 5 and 6, hydrogen bonding dynamics in concentrated salt and acid solutions were investigated. Through electrochemical method, it was found decades ago that proton has extraordinary ion mobility, about 6 times larger than that of cations of similar sizse, such as sodium, ammonium or lithium. The great difference between them results from the cation transport mechanism. In dilute solution, the main transport mechanism of proton is through relay mechanism where the identity of proton transfers from one water molecule to another. This minimizes the physical diffusion of the atoms and greatly increases the proton mobility. The mechanism is generally called Grotthuss mechanism, which was came up with by Grotthuss in 1806 though not on the molecular level. However, the step time of a single proton transfer event between two water molecules is difficult to observe experimentally. Here we used the CN stretch of methyl thiocyanate (MeSCN) as the vibrational probe. In concentrated hydrochloric solutions, it has two frequency resolved states. One state refers to water hydrogen bonded to the nitrogen lone pair while the other state corresponds to hydronium ion hydrogen bonded to the CN. Chemical exchange phenomenon was observed between these two states. Ab initio simulation done by our collaborator shows that the proton hopping is the dominate mechanism for chemical exchange. The comparison experiment done in lithium chloride solution provides further contrast between hydronium and other metal ions. Therefore, we were able to track proton hopping in a time-resolved manner for the first time. Extrapolation to the dilute limit demonstrates that the HB rearrangement in pure water is the driving force of proton hopping in dilute solution.

Book Ultrafast Dynamics of Water in Nonaqueous Liquids

Download or read book Ultrafast Dynamics of Water in Nonaqueous Liquids written by Daryl Brian Wong and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The dynamic structure of water and its hydrogen bond network are important in nature. Water molecules make highly directed hydrogen bonds that allow it to form extended hydrogen bond networks in the bulk. In this extended network, water's directional hydrogen bonds are readily fluctuating and exchanging. When interacting with molecules other than itself, water behaves differently than what is observed in the bulk. The dynamics of water molecules in a heterogeneous environment is dictated in large part by the size and hydrogen bonding nature of the interacting non-water species. While water still forms directed hydrogen bonds in heterogeneous environments, the dynamics of the water molecules are altered by disruption of water's extended hydrogen bond network. The studies described herein are concerned with how water's orientational and structural dynamics change as it interacts with non-water species in solution which has relevance to chemical and biological systems. Ultrafast infrared spectroscopic techniques are used to examine water and its hydrogen bonding network. These methods interrogate molecular systems with femtosecond infrared pulses which can probe the dynamics of water molecules (100s of fs to ps) on the time scale with which they move. Changes in local molecular structure can be monitored by observing changes in vibrational frequency. The stretching mode of deuterated hydroxyl (OD) groups serves as the vibrational probe for the experiments. In these studies, both two-dimensional infrared vibrational echo (2D IR) spectroscopy and polarization selective pump-probe spectroscopy are employed to monitor the dynamics of water molecules in non-aqueous environments. The pump-probe experiments provide information on both the vibrational lifetime and orientational relaxation of water molecules within the sample. 2D IR experiments characterize the spectral diffusion of the vibrational mode through the frequency-frequency correlation function (FFCF) which monitors the structural evolution of water's hydrogen bonds. The dynamics of water in two systems are discussed in this thesis. The first study examines the dynamics of dimethyl sulfoxide (DMSO)/water solutions over a wide range of water concentrations. Both linear IR absorption spectra and vibrational population relaxation studies show that water-water and water-DMSO interactions are present, even at very low water concentration. Though water forms multiple hydrogen bonding partners, observation of a single ensemble anisotropy indicates the concerted reorientation between water and DMSO molecules in solution. In addition to OHD-OKE experiments, which track the orientational relaxation timescales to be similar to that of water suggests that the reorientation of water is coupled to that of the DMSO molecules in solution. Interpretation of FFCF measurements from the 2D IR experiment shows fast, local hydrogen bond fluctuations and slower longer structural fluctuations associated with global hydrogen bond rearrangement. In the second system, the vibrational dynamics of spatially isolated water molecules were examined in the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6). The antisymmetric and symmetric modes of D2O are well resolved, which is unusual for the condensed phase. The spectral separation of the two peaks make it possible to study the inter and intramolecular dynamics of a vibrationally excited water molecule. Examination of the intramolecular dynamics focused mainly on the redistribution of vibrational energy throughout the water molecule. Both population exchange between vibrational modes and excited-state relaxation were monitored to determine the timescales vibrational energy exchange and relaxation. In addition, coherent quantum beats were observed in short time amplitude and frequency correlation trajectories. Oscillations in the crosspeak shape, from highly correlated to slightly anti-correlated, show that coherent transfer of energy between the two modes occurs in a slightly anti-correlated fashion. The slight anti-correlation can be explained by a distribution in the coupling strength between the local hydroxyl modes. The water's dynamics as influenced by the surrounding salt molecules was examined using both FFCF of the crosspeak shape as well as the orientational relaxation. Timescales for orientational relaxation and structural rearrangements of the isolated water molecules within solution were determined.

Book A Molecular Perspective on Ion Hydration

Download or read book A Molecular Perspective on Ion Hydration written by Pushp Bajaj and published by . This book was released on 2018 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydration of anions, particularly halide ions, presents a particularly challenging problem where due to strong intermolecular interactions the ion can significantly alter the hydrogen bonding network of water. The extent to which varies greatly depending on the nature of ion-water interactions. An accurate description of the interplay between ion-water and water-water interactions is necessary to achieve a molecular level understanding of ion hydration. In this work, we present a bottom-up analysis of the structure, energetics, vibrational spectroscopy and hydrogen bond arrangement of small halide-water clusters (X-(H2O)n, X- = F-, Cl-, Br-, I-) using state-of-the-art computational chemistry tools. We begin by developing ab initio based many-body potential energy functions PEFs, called MB-nrg, for describing halide-water intermolecular interactions that include many-body effects for all system sizes by taking into account explicitly the two-body and three-body interactions, and all higher order interactions implicitly through a mean field approximation. To directly probe the strength of halide-water intermolecular interactions, full dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers at the quantum-mechanical level. Followed by an analysis of the structure, hydrogen bond arrangement and temperature dependent dynamics of the I-(H2O)2 and I-(D2O)2 through quantum path integral molecular dynamics simulations. Tunneling pathways leading hydrogen bond rearrangement were identified and the corresponding tunneling splitting patterns were calculated using the ring polymer instanton method. Finally, we studied the structural, thermodynamic and spectroscopic properties of small X-(H2O)n clusters where X- = F-, Cl-, Br-, I-), n=3-6, using replica exchange molecular dynamics simulations. Across all sizes, fluoride-water clusters exhibit qualitatively different structures and properties compared to the chloride-, bromide- and iodide-water clusters which, on the other hand, are found to be similar to each other. This is a direct consequence of the exceptionally strong fluoride-water intermolecular interactions, which significantly affect the water-water hydrogen bonding strength and arrangement in the vicinity. Through extensive comparisons between the MB-nrg PEFs and classical polarizable force fields and approximate ab initio methods like density functional theory and MP2, our results emphasize the importance of an accurate description of the quantum mechanical many-body intermolecular interactions for a robust molecular level understanding of halide ion hydration. Follow-up studies of larger cluster sizes will focus on the evolution of the hydration shells in a systematic way.

Book Structure and Reactivity in Aqueous Solution

Download or read book Structure and Reactivity in Aqueous Solution written by Christopher J. Cramer and published by . This book was released on 1994 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides critical experimental studies and state-of-the-art theoretical analyses of organic reactions in which the role of the aqueous environment is particularly clear. Examines equilibrium and nonequilibrium solvent effects for a variety of chemical processes. Provides an overview of the scope and utility of the present broad array of modeling techniques for mimicking aqueous solution. Includes detailed studies of the hydrophobic effect as it influences protein folding and organic reactivity. Examines the effect of aqueous solvation on biological macromolecules and interfaces.

Book Clustering  Reorientation Dynamics  and Proton Transfer in Glassy Oligomeric Solids

Download or read book Clustering Reorientation Dynamics and Proton Transfer in Glassy Oligomeric Solids written by Jacob A. Harvey and published by . This book was released on 2013 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: We have modelled structures and dynamics of hydrogen bond networks that form from imidazoles tethered to oligomeric aliphatic backbones in crystalline and glassy phases. We have studied the behavior of oligomers containing 5 or 10 imidazole groups. These systems have been simulated over the range 100-900 K with constantpressure molecular dynamics using the AMBER 94 force field, which was found to show good agreement with ab initio calculations on hydrogen bond strengths and imidazole rotational barriers. Hypothetical crystalline solids formed from packed 5-mers and 10-mers melt above 600 K, then form glassy solids upon cooling. Viewing hydrogen bond networks as clusters, we gathered statistics on cluster sizes and percolating pathways as a function of temperature, for comparison with the same quantities extracted from neat imidazole liquid. We have found that, at a given temperature, the glass composed of imidazole 5-mers shows the same hydrogen bond mean cluster size as that from the 10-mer glass, and that this size is consistently larger than that in liquid imidazole. Hydrogen bond clusters were found to percolate across the simulation cell for all glassy and crystalline solids, but not for any imidazole liquid. The apparent activation energy associated with hydrogen bond lifetimes in these glasses (9.3 kJ/mol) is close to that for the liquid (8.7 kJ/mol), but is substantially less than that in the crystalline solid (13.3 kJ/mol). These results indicate that glassy oligomeric solids show a promising mixture of extended hydrogen bond clusters and liquid-like dynamics. This study prompted a continued look at smaller oligomers (monomers, dimers, trimers, and pentamers). Using many of the above statistics we found that decreased chain length decreased the tendency to form global hydrogen bonding networks (percolation pathways). We also developed an reorientational correlation for the imidazole ring which allowed us to extract a timescale for reorientation. Smaller chains produce faster reorientation timescales and thus there is a trade off between faster reorientation dynamics and long global hydrogen bonding networks. Moreover we showed that homogeneity of chain length has no effect on hydrogen bonding statistics. Initial development on a multi-state empirical valence bond model has been to study proton transfer in liquid imidazole. We have shown that GAFF produces very large proton transfer barriers created by a highly repulsive N· · ·H VDW interaction at the transition point. In order to produce an acceptable fit to the potential energy surface while still producing stable dynamics this interaction must be turned off. This is in contrary to what is reported in the literature [14]. Using our model we have produced simulations with acceptable drift in the total energy (3.2 kcal/mol per ns) and negligible drift in the temperature (.12 K/ns).

Book Understanding and Modelling Hydrogen Bonding in Liquid Water

Download or read book Understanding and Modelling Hydrogen Bonding in Liquid Water written by Revati Kumar and published by . This book was released on 2007 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: