EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Structure and Energetics of Nanoparticles and Ionomer Films in Fuel Cell Catalyst Layers

Download or read book Structure and Energetics of Nanoparticles and Ionomer Films in Fuel Cell Catalyst Layers written by Qianping He and published by . This book was released on 2013 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving the durability and utilization efficiency of the platinum-on-carbon (Pt/C) catalyst is of vital importance to the commercialization of the polymer electrolyte membrane fuel cell (PEMFC). This body of work provides molecular level insights to aid the fulfillment of this goal. Chapter 1 describes the use of molecular dynamics (MD) simulation in an effort to understand the Pt/C degradation issue from the nano-adhesion point of view. The roles of catalyst nanoparticle size, shape, Pt/C surface oxidation and the extent of ionomer film hydration are investigated to study their effects on nano-particle adhesion. It is found that the adhesion force strengthens as the Pt size goes up. Nanoparticle of tetrahedral shape exhibits relatively stronger connection with the carbon. The hydroxylated surface enhances nano-adhesion and epoxidized surface diminishes the adhesion. The presence of ionomer film strengthens the adhesion. Chapter 2 uses MD simulations to investigate the microstructure of the catalyst layer, which is essential information needed for increasing the catalyst utilization rate. The ionomer film thickness, hydration level, surface oxidation of Pt/C, presence of Pt or PtO catalysts are key variables studied for their effects on the catalyst layer microstructure and transport properties. It is concluded that the oxidation of the carbon surface and the presence of Pt or PtO catalyst drastically influence the ionomer film configuration and the water distribution on the surface. The thickness of the ionomer film is directly related with its ability of retaining water. Chapter 3 describes experimental work exploring the effect of radiation damage on the microscopic characterization of the catalyst layer of the PEMFCs. It also provides information on the feasibility of in-situ nano-adhesion measurements inside the SEM. It is found that the radiation damage of the catalyst sample usually starts from the interface of Pt/C and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. The results indicate the low reliability of the in-situ nano-adhesion measurement. All three chapters serve to expand the fundamental understanding of the microstructure of the catalyst layer, which contribute to the development of a more durable, less expensive and better performing PEMFC.

Book Control of Ionomer Distribution and Porosity in Roll to Roll Coated Fuel Cell Catalyst Layers

Download or read book Control of Ionomer Distribution and Porosity in Roll to Roll Coated Fuel Cell Catalyst Layers written by and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: As fuel cells transition from the laboratory to industrial production for vehicles and other applications there is a need to understand how manufacturing processes impact the properties and, ultimately, the performance of materials. Roll-to-roll coating enables processing at meters per second speeds with physics that can be quite different from common laboratory coating methods. In this work, we have focused on the coating of catalyst layers for proton exchange membrane fuel cells. Commonly, laboratory samples are prepared using spray coating or hand painting, which effectively coat many thin layers to achieve the desired catalyst layer thickness. This creates catalyst layers with uniform distributions of materials throughout the thickness of the full catalyst layer. In contrast, roll-to-roll methods, like slot die and gravure, coat the catalyst layer as a single wet film. As the film dries, ink constituents are able to segregate, leading to a heterogeneous distribution of materials through the thickness of the layer. It is also known that solvent and drying rate can affect the morphology of the catalyst layer. Thus, there is a need to understand how ink formulation and the drying process influence the distribution of materials and catalyst layer morphology. Here, we have explored the influence of solvent and drying rate on morphology of roll-to-roll coated catalyst layers. We show the development of the Kelvin probe method as a rapid screening technique for qualitative analysis of ionomer distribution. We also utilize nano X-ray computed tomography to visualize electrode structure and to quantify particle-size and pore-size distributions, thickness-dependent ionomer distribution, tortuosity, and effective transport properties. We find that solvent has a strong influence on ionomer distribution, with less of an effect on porosity. Conversely, drying temperature has a strong influence on porosity, but less influence on ionomer distribution. Finally, we utilize in situ fuel cell performance testing and other advanced diagnostics to quantify the impact of catalyst layer properties on fuel cell performance and demonstrate that roll-to-roll coating is capable of coating high performance catalyst layers in multi-meter lengths. have focused on the coating of catalyst layers for proton exchange membrane fuel cells. Commonly, laboratory samples are prepared using spray coating or hand painting, which effectively coat many thin layers to achieve the desired catalyst layer thickness. This creates catalyst layers with uniform distributions of materials throughout the thickness of the full catalyst layer. In contrast, roll-to-roll methods, like slot die and gravure, coat the catalyst layer as a single wet film. As the film dries, ink constituents are able to segregate, leading to a heterogeneous distribution of materials through the thickness of the layer. It is also known that solvent and drying rate can affect the morphology of the catalyst layer. Thus, there is a need to understand how ink formulation and the drying process influence the distribution of materials and catalyst layer morphology. Here, we have explored the influence of solvent and drying rate on morphology of roll-to-roll coated catalyst layers. We show the development of the Kelvin probe method as a rapid screening technique for qualitative analysis of ionomer distribution. We also utilize nano X-ray computed tomography to visualize electrode structure and to quantify particle-size and pore-size distributions, thickness-dependent ionomer distribution, tortuosity, and effective transport properties. We find that solvent has a strong influence on ionomer distribution, with less of an effect on porosity. Conversely, drying temperature has a strong influence on porosity, but less influence on ionomer distribution. Finally, we utilize in situ fuel cell performance testing and other advanced diagnostics to quantify the impact of catalyst layer properties on fuel cell performance and demonstrate that roll-to-roll coating is capable of coating high performance catalyst layers in multi-meter lengths.

Book Nanoscale Phenomena in Ultrathin Catalyst Layers of PEM Fuel Cells

Download or read book Nanoscale Phenomena in Ultrathin Catalyst Layers of PEM Fuel Cells written by Amin Nouri Khorasani and published by . This book was released on 2013 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ionomer-free ultrathin catalyst layers have shown promise to enhance the performance and reduce the platinum loading of catalyst layers in polymer electrolyte fuel cell. The nanostructure of a catalyst layer affects the distribution and diffusion of reactants, and consequently its effectiveness factor. We employed classical molecular dynamics to simulate a catalyst layer pore as a water-filled channel with faceted walls, and investigated the effect of channel geometry and charging on hydronium ion and water distribution and diffusion in the channel. Equilibrium hydronium ion distribution profiles on the catalyst channel were obtained to calculate the effect of channel structure on the electrostatic effectiveness factor of the channel. Furthermore, we calculated the self-diffusion coefficient and interfacial water structure in the model channel. Results on proton concentration, diffusion and kinetics are discussed in view of catalyst layer performance.

Book Fully Hydrocarbon Ionomer Catalyst Layers in Proton  and Anion exchange Membrane Fuel Cells

Download or read book Fully Hydrocarbon Ionomer Catalyst Layers in Proton and Anion exchange Membrane Fuel Cells written by Benjamin Britton and published by . This book was released on 2018 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The structure and morphology of fuel cell catalyst layers and concomitant system properties, particularly mass transport, were investigated through electrochemical and physical characterization techniques. Catalyst layers designed for proton-exchange membrane fuel cells (PEMFCs) incorporated a hydrocarbon ionomer (sP4c) soluble in low-boiling solvents. These were used to probe the property alterations effected by increasing ionomer coverage within the catalyst layer, and also to measure the impact an extremely small quantities (0.38 wt%) of a commonly employed high-boiling solvent, DMF, in the catalyst ink. High-boiling solvents are difficult to eliminate during electrode formation, and resultant solvent-annealed catalyst layers lost electrocatalytic surface area, resulting in markedly greater kinetic losses compared to catalyst layers formed without high-boiling solvents. Catalyst layers designed for anion-exchange membrane fuel cells (AEMFCs) incorporating hydrocarbon ionomer in the catalyst layer (FAA-3) requiring high-boiling solvent (NMP, 2.3 wt% of total solvent) were formed over a broad array of conditions. Catalyst layers formed slowly at high temperatures to drive off high-boiling solvent displayed significantly enhanced mesoporosity, relating to enhanced transport characteristics, over solvent-annealed analogues with low mesoporosity, despite comparable total volumes. The impacts of solvent annealing on AEMFC electrode properties and resultant achievable power density and degradation were disproportionate compared to the similar PEMFC study. A new methodology for fuel cell membrane-electrode assembly construction, direct membrane deposition (DMD), enables lower interfacial resistances and enhanced water transport for a given thickness of membrane. These are desired properties for both PEMFCs and AEMFCs. Initially developed with inkjet printers designed for single-cell biological printing applications, this method was adapted to spray-coating systems in order to address issues with fuel and electrical crossover, suitability for hydrocarbon ionomers, and scalability / large-scale reproducibility. A perfluorinated sulfonic acid ionomer reference material (Nafion D520) was employed for direct comparison to initial methods. Highly reproducible DMDs with low fuel and electrical crossover resulted.

Book Control of Ionomer Distribution in Roll to Roll Coated Fuel Cell Catalyst Layers

Download or read book Control of Ionomer Distribution in Roll to Roll Coated Fuel Cell Catalyst Layers written by and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cell catalyst layers are a complex mixture of catalyst particles and ion-conducting polymers. The performance of catalyst layers is highly dependent on microstructure, which must balance proton and electron conduction with gas transport. As fuel cells transition from the laboratory to industrial production for vehicles and other applications, there is a need to understand how manufacturing processes impact the microstructure and, ultimately, the performance of catalyst layers. In this work, we have focused on the roll-to-roll coating of catalyst layers for proton exchange membrane fuel cells. The catalyst layers are responsible for the electrochemical reactions that enable power production. In these devices the catalyst is commonly a Pt nanoparticle supported on porous carbon blacks. The ion conducting polymer, or ionomer, is typically a perfluorosulfonic acid. The most common being Nafion. To fabricate the catalyst layer, the catalyst particles are dispersed in an ink with the ionomer and cast to form the catalyst layer. Commonly, laboratory samples are prepared using spray coating or hand painting, which effectively coat many thin layers to achieve the desired catalyst layer thickness. This creates catalyst layers with uniform distributions of materials throughout the thickness of the full catalyst layer. In contrast, roll-to-roll methods, like slot die, gravure or screen printing, coat the catalyst layer as a single wet film. As the film dries, ink constituents are able to segregate, leading to a heterogeneous distribution of materials through the thickness of the layer. It is also known that the choice of solvent and drying rate can affect the morphology of the catalyst layer. Thus, there is a need to understand how ink formulation and the drying process influence the distribution of materials and catalyst layer morphology. Here, we have explored the influence of solvent and drying rate on morphology of roll-to-roll coated catalyst layers. We show the development of the Kelvin probe method as a rapid screening technique for qualitative analysis of ionomer distribution. We also utilize nano X-ray computed tomography to visualize electrode structure and to quantify particle-size and pore-size distributions, thickness-dependent ionomer distribution, tortuosity, and effective transport properties. We find that solvent has a strong influence on ionomer distribution, with less of an effect on porosity. Conversely, drying temperature has a strong influence on porosity, but less influence on ionomer distribution. Finally, we utilize in situ fuel cell performance testing and other advanced diagnostics to quantify the impact of catalyst layer properties on fuel cell performance and demonstrate that roll-to-roll coating is capable of coating high performance catalyst layers in multi-meter lengths.

Book Polymer Electrolyte Fuel Cell Durability

Download or read book Polymer Electrolyte Fuel Cell Durability written by Felix N. Büchi and published by Springer Science & Business Media. This book was released on 2009-02-08 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.

Book Electrocatalysis in Fuel Cells

Download or read book Electrocatalysis in Fuel Cells written by Minhua Shao and published by Springer Science & Business Media. This book was released on 2013-04-08 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are one of the most promising clean energy conversion devices that can solve the environmental and energy problems in our society. However, the high platinum loading of fuel cells - and thus their high cost - prevents their commercialization. Non- or low- platinum electrocatalysts are needed to lower the fuel cell cost. Electrocatalysis in Fuel Cells: A Non and Low Platinum Approach is a comprehensive book summarizing recent advances of electrocatalysis in oxygen reduction and alcohol oxidation, with a particular focus on non- and low-Pt electrocatalysts. All twenty four chapters were written by worldwide experts in their fields. The fundamentals and applications of novel electrocatalysts are discussed thoroughly in the book. The book is geared toward researchers in the field, postgraduate students and lecturers, and scientists and engineers at fuel cell and automotive companies. It can even be a reference book for those who are interested in this area.

Book Lithium Batteries

    Book Details:
  • Author : Gholam-Abbas Nazri
  • Publisher : Springer Science & Business Media
  • Release : 2009-01-14
  • ISBN : 0387926747
  • Pages : 725 pages

Download or read book Lithium Batteries written by Gholam-Abbas Nazri and published by Springer Science & Business Media. This book was released on 2009-01-14 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium Batteries: Science and Technology is an up-to-date and comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. The volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods.

Book PEM Water Electrolysis

    Book Details:
  • Author : Dmitri Bessarabov
  • Publisher : Academic Press
  • Release : 2018-08-04
  • ISBN : 0081028318
  • Pages : 140 pages

Download or read book PEM Water Electrolysis written by Dmitri Bessarabov and published by Academic Press. This book was released on 2018-08-04 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: PEM Water Electrolysis, a volume in the Hydrogen Energy and Fuel Cell Primers series presents the most recent advances in the field. It brings together information that has thus far been scattered in many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students. Volumes One and Two allow readers to identify technology gaps for commercially viable PEM electrolysis systems for energy applications and examine the fundamentals of PEM electrolysis and selected research topics that are top of mind for the academic and industry community, such as gas cross-over and AST protocols. The book lays the foundation for the exploration of the current industrial trends for PEM electrolysis, such as power to gas application and a strong focus on the current trends in the application of PEM electrolysis associated with energy storage. Presents the fundamentals and most current knowledge in proton exchange membrane water electrolyzers Explores the technology gaps and challenges for commercial deployment of PEM water electrolysis technologies Includes unconventional systems, such as ozone generators Brings together information from many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students alike

Book PEM Fuel Cell Electrocatalysts and Catalyst Layers

Download or read book PEM Fuel Cell Electrocatalysts and Catalyst Layers written by Jiujun Zhang and published by Springer Science & Business Media. This book was released on 2008-08-26 with total page 1147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Book High Temperature Polymer Electrolyte Membrane Fuel Cells

Download or read book High Temperature Polymer Electrolyte Membrane Fuel Cells written by Qingfeng Li and published by Springer. This book was released on 2015-10-15 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.

Book Hydrogen Energy Engineering

Download or read book Hydrogen Energy Engineering written by Kazunari Sasaki and published by Springer. This book was released on 2016-09-07 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the fundamental principles and latest research findings in hydrogen energy fields including: hydrogen production, hydrogen storage, fuel cells, hydrogen safety, economics, and the impact on society. Further, the book introduces the latest development trends in practical applications, especially in commercial household fuel cells and commercial fuel cell vehicles in Japan. This book not only helps readers to further their basic knowledge, but also presents the state of the art of hydrogen-energy-related research and development. This work serves as an excellent reference for beginners such as graduate students, as well as a handbook and systematic summary of entire hydrogen-energy systems for scientists and engineers.

Book Intermediate Temperature Solid Oxide Fuel Cells

Download or read book Intermediate Temperature Solid Oxide Fuel Cells written by Gurbinder Kaur and published by Elsevier. This book was released on 2019-11-21 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intermediate Temperature Solid Oxide Fuel Cells: Electrolytes, Electrodes and Interconnects introduces the fundamental principles of intermediate solid oxide fuel cells technology. It provides the reader with a broad understanding and practical knowledge of the electrodes, pyrochlore/perovskite/oxide electrolytes and interconnects which form the backbone of the Solid Oxide Fuel Cell (SOFC) unit. Opening with an introduction to the thermodynamics, physiochemical and electrochemical behavior of Solid Oxide Fuel Cells (SOFC), the book also discusses specific materials, including low temperature brownmillerites and aurivillius electrolytes, as well as pyrochlore interconnects. This book analyzes the basic concepts, providing cutting-edge information for both researchers and students. It is a complete reference for Intermediate Solid Oxide Fuel Cells technology that will be a vital resource for those working in materials science, fuel cells and solid state chemistry. Provides a single source of information on glass, electrolytes, interconnects, vanadates, pyrochlores and perovskite SOFC Includes illustrations that provide a clear visual explanation of concepts being discussed Progresses from a discussion of basic concepts that will enable readers to easily comprehend the subject matter

Book Hydrogen and Fuel Cells

Download or read book Hydrogen and Fuel Cells written by International Energy Agency and published by Simon and Schuster. This book was released on 2004 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrogen and fuel cells are vital technologies to ensure a secure and CO2-free energy future. Their development will take decades of extensive public and private effort to achieve technology breakthroughs and commercial maturity. Government research programs are indispensable for catalyzing the development process. This report maps the IEA countries' current efforts to research, develop and deploy the interlocking elements that constitute a "hydrogen economy", including CO2 capture and storage when hydrogen is produced out of fossil fuels. It provides an overview of what is being done, and by whom, covering an extensive complexity of national government R & D programs. The survey highlights the potential for exploiting the benefits of the international cooperation. This book draws primarily upon information contributed by IEA governments. In virtually all the IEA countries, important R & D and policy efforts on hydrogen and fuel cells are in place and expanding. Some are fully-integrated, government-funded programs, some are a key element in an overall strategy spread among multiple public and private efforts. The large amount of information provided in this publication reflects the vast array of technologies and logistics required to build the "hydrogen economy."--Publisher description.

Book Clay Polymer Nanocomposites

Download or read book Clay Polymer Nanocomposites written by Khouloud Jlassi and published by Elsevier. This book was released on 2017-07-26 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clay–Polymer Nanocomposites is a complete summary of the existing knowledge on this topic, from the basic concepts of synthesis and design to their applications in timely topics such as high-performance composites, environment, and energy issues. This book covers many aspects of synthesis such as in- situ polymerization within the interlamellar spacing of the clays or by reaction of pristine or pre-modified clays with reactive polymers and prepolymers. Indeed, nanocomposites can be prepared at industrial scale by melt mixing. Regardless the synthesis method, much is said in this book about the importance of theclay pre-modification step, which is demonstrated to be effective, on many occasions, in obtaining exfoliated nanocomposites. Clay–Polymer Nanocomposites reports the background to numerous characterization methods including solid state NMR, neutron scattering, diffraction and vibrational techniques as well as surface analytical methods, namely XPS, inverse gas chromatography and nitrogen adsorption to probe surface composition, wetting and textural/structural properties. Although not described in dedicated chapters, numerous X-ray diffraction patterns of clay–polymer nanocomposites and reference materials are displayed to account for the effects of intercalation and exfoliations of layered aluminosilicates. Finally, multiscale molecular simulation protocols are presenting for predicting morphologies and properties of nanostructured polymer systems with industrial relevance. As far as applications are concerned, Clay–Polymer Nanocomposites examines structural composites such as clay–epoxy and clay–biopolymers, the use of clay–polymer nanocomposites as reactive nanocomposite fillers, catalytic clay-(conductive) polymers and similar nanocomposites for the uptake of hazardous compounds or for controlled drug release, antibacterial applications, energy storage, and more. The most comprehensive coverage of the state of the art in clay–polymer nanocomposites, from synthesis and design to opportunities and applications Covers the various methods of characterization of clay–polymer nanocomposites - including spectroscopy, thermal analyses, and X-ray diffraction Includes a discussion of a range of application areas, including biomedicine, energy storage, biofouling resistance, and more

Book Photoelectrocatalysis

Download or read book Photoelectrocatalysis written by Leonardo Palmisano and published by Elsevier. This book was released on 2022-10-21 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrocatalysis: Fundamentals and Applications presents an in-depth review of the topic for students and researchersworking on photoelectrocatalysis-related subjects from pure chemistry to materials and environmental chemistry inorder to propose applications and new perspectives. The main advantage of a photoelectrocatalytic process is the mildexperimental conditions under which the reactions are carried out, which are often possible at atmospheric pressure androom temperature using cheap and nontoxic solvents (e.g., water), oxidants (e.g., O2 from the air), catalytic materials (e.g.,TiO2 on Ti layer), and the potential exploitation of solar light. This book presents the fundamentals and the applications of photoelectrocatalysis, such as hydrogen production fromwater splitting, the remediation of harmful compounds, and CO2 reduction. Photoelectrocatalytic reactors and lightsources, in addition to kinetic aspects, are presented along with an exploration of the relationship between photocatalysisand electrocatalysis. In addition, photocorrosion issues and the application of selective photoelectrocatalytic organictransformations, which is now a growing field of research, are also reported. Finally, the advantages/disadvantages andfuture perspectives of photoelectrocatalysis are highlighted through the possibility of working at a pilot/industrial scale inenvironmentally friendly conditions. Presents the fundamentals of photoelectrocatalysis Outlines photoelectrocatalytic green chemistry Reviews photoelectrocatalytic remediation of harmful compounds, hydrogen production, and CO2 reduction Includes photocorrosion, photoelectrocatalytic reactors, and modeling along with kinetic aspects

Book Chalcogenide Materials for Energy Conversion

Download or read book Chalcogenide Materials for Energy Conversion written by Nicolas Alonso-Vante and published by Springer. This book was released on 2018-04-20 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses electrocatalysis based on chalcogenides, particularly in the nanoscale domain. Special attention is paid to the hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR). The book provides an introduction to materials synthesis; the basic principles of electrocatalysis; related precious metal versus non-precious metal catalytic center chalcogenides as well as supports; and the role of such supports in stabilizing the catalytic centers. In short: pursuing a bottom-up approach, it covers the properties of this class of electrocatalysts and examines their applications in low-temperature fuel systems such as microfluidic fuel cells for portable devices. Accordingly, it is ideally suited for all professionals and researchers interested in electrochemistry, renewable energy and electrocatalysis, and non-precious metal centers for chemical energy conversion.