Download or read book Epitaxial Graphene on Silicon Carbide written by Gemma Rius and published by CRC Press. This book was released on 2018-01-19 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.
Download or read book Epitaxial Graphene on Silicon Carbide written by Gemma Rius and published by CRC Press. This book was released on 2018-01-19 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.
Download or read book Atomic and Molecular Manipulation written by and published by Elsevier. This book was released on 2011-07-13 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic scale", and "Chemistry at the atomic scale". This book aims to illustrate the main aspects of this ongoing scientific adventure and to anticipate the major challenges for the future in "Atomic and molecular manipulation" from fundamental knowledge to the fabrication of atomic-scale devices. - Provides a broad overview of the field to aid those new and entering into this research area - Presents a review of the historical development and evolution of the field - Offers a clear personalized view of current scanning probe microscopy research from world experts
Download or read book Applications of Nanomaterials in Sensors and Diagnostics written by Adisorn Tuantranont and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.
Download or read book Graphene written by Viera Skakalova and published by Woodhead Publishing. This book was released on 2021-06-23 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene: Properties, Preparation, Characterization and Devices, Second Edition, provides a comprehensive look at the methods used to prepare and analyze graphene. Since the first edition's publication, there have been many advances in the understanding of graphene, in particular, its key properties and most relevant applications. Updates to this new edition include chapters on liquid exfoliation production of graphene and scanning transmission electron microscopy of graphene. New sections cover graphene's thermal, optical, mechanical, chemical and biocompatibility, with special attention paid to transport properties, a main barrier to the realization of commercial applications. - Reviews the preparation and characterization of graphene, covering the latest advances in liquid exfoliation production and the scanning transmission electron microscopy of graphene - Includes a new section dedicated to the properties of graphene (thermal, transport, optical, mechanical, chemical) to reflect the latest understanding of this important material - Discusses the most relevant applications of graphene, such as biomedical, sensing, energy and electronic applications
Download or read book Growing Graphene on Semiconductors written by Nunzio Motta and published by CRC Press. This book was released on 2017-09-08 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene, the wonder material of the 21st century, is expected to play an important role in future nanoelectronic applications, but the only way to achieve this goal is to grow graphene directly on a semiconductor, integrating it in the chain for the production of electronic circuits and devices. This book summarizes the latest achievements in this field, with particular attention to the graphitization of SiC. Through high-temperature annealing in a controlled environment, it is possible to decompose the topmost SiC layers, obtaining quasi-ideal graphene by Si sublimation with record electronic mobilities, while selective growth on patterned structures makes possible the opening of a gap by quantum confinement. The book starts with a review chapter on the significance and challenges of graphene growth on semiconductors, followed by three chapters dedicated to an up-to-date analysis of the synthesis of graphene in ultrahigh vacuum, and concludes with two chapters discussing possible ways of tailoring the electronic band structure of epitaxial graphene by atomic intercalation and of creating a gap by the growth of templated graphene nanostructures.
Download or read book Two Dimensional Carbon written by Wu Yihong and published by CRC Press. This book was released on 2014-04-09 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for applications of 2D carbon in energy storage including supercapacitor, lithium ion battery and fuel cells.
Download or read book Nanomechanical and Nanoelectromechanical Phenomena in 2D Atomic Crystals written by Nicholas D. Kay and published by Springer. This book was released on 2017-11-27 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis introduces a unique approach of applying atomic force microscopy to study the nanoelectromechanical properties of 2D materials, providing high-resolution computer-generated imagery (CGI) and diagrams to aid readers’ understanding and visualization. The isolation of graphene and, shortly after, a host of other 2D materials has attracted a great deal of interest in the scientific community for both their range of extremely desirable and their record-breaking properties. Amongst these properties are some of the highest elastic moduli and tensile strengths ever observed in nature. The work, which was undertaken at Lancaster University’s Physics department in conjunction with the University of Manchester and the National Physical Laboratory, offers a new approach to understanding the nanomechanical and nanoelectromechanical properties of 2D materials by utilising the nanoscale and nanosecond resolution of ultrasonic force and heterodyne force microscopy (UFM and HFM) – both contact mode atomic force microscopy (AFM) techniques. Using this approach and developing several other new techniques the authors succeeded in probing samples’ subsurface and mechanical properties, which would otherwise remain hidden. Lastly, by using a new technique, coined electrostatic heterodyne force microscopy (E-HFM), the authors were able to observe nanoscale electromechanical vibrations with a nanometre and nanosecond resolution, in addition to probing the local electrostatic environment of devices fabricated from 2D materials.
Download or read book Integration of 2D Materials for Electronics Applications written by Filippo Giannazzo and published by MDPI. This book was released on 2019-02-13 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Integration of 2D Materials for Electronics Applications" that was published in Crystals
Download or read book Silicon Carbide Technology for Advanced Human Healthcare Applications written by Stephen E. Saddow and published by Elsevier. This book was released on 2022-07-13 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: After over two decades of focused research and development, silicon carbide (SiC) is now ready for use in the healthcare sector and Silicon Carbide Technology for Advanced Human Healthcare Applications provides an up-to-date assessment of SiC devices for long-term human use. It explores a plethora of applications that SiC is uniquely positioned for in human healthcare, beginning with the three primary areas of technology which are closest to human trials and thus adoption in the healthcare industry: neural implants and spinal cord repair, graphene and biosensors, and finally deep tissue cancer therapy using SiC nanotechnology. Biomedical-inspired engineers, scientists, and healthcare professionals will find this book to be very useful in two ways: (I) as a guide to new ways to design and develop advanced medical devices and (II) as a reference for new developments in the field. The book's intent is to stimulate ideas for further technological enhancements and breakthroughs, which will provide alternative solutions for human healthcare applications. - Discusses the utilization of SiC materials for biomedical applications - Provides a logical pathway to understand why SiC is ideal for several critical applications, in particular for long-term implantable devices, and will serve as a guide to new ways to design and develop advanced medical devices - Serves as a reference for new developments in the field and as a technology resource for medical doctors and practitioners looking to identify and implement advanced engineering solutions to everyday medical challenges that currently lack long-term, cost-effective solutions
Download or read book Scanning Nonlinear Dielectric Microscopy written by Yasuo Cho and published by Woodhead Publishing. This book was released on 2020-05-20 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scanning Nonlinear Dielectric Microscopy: Investigation of Ferroelectric, Dielectric, and Semiconductor Materials and Devices is the definitive reference on an important tool to characterize ferroelectric, dielectric and semiconductor materials. Written by the inventor, the book reviews the methods for applying the technique to key materials applications, including the measurement of ferroelectric materials at the atomic scale and the visualization and measurement of semiconductor materials and devices at a high level of sensitivity. Finally, the book reviews new insights this technique has given to material and device physics in ferroelectric and semiconductor materials. The book is appropriate for those involved in the development of ferroelectric, dielectric and semiconductor materials devices in academia and industry. - Presents an in-depth look at the SNDM materials characterization technique by its inventor - Reviews key materials applications, such as measurement of ferroelectric materials at the nanoscale and measurement of semiconductor materials and devices - Analyzes key insights on semiconductor materials and device physics derived from the SNDM technique
Download or read book Physics and Chemistry of Graphene Second Edition written by Toshiaki Enoki and published by CRC Press. This book was released on 2019-11-01 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene has been attracting growing attentions in physics, chemistry, and device applications after the discovery of micromechanically cleaved graphene sheet by A. Geim and K. Novoselov, who were awarded the 2010 Nobel Prize in Physics. The electronic structure of graphene, which is described in terms of massless Dirac fermions, brings about unconventional electronic properties, which are not only an important basic issue in condensed matter physics but also a promising target of cutting-edge electronics/spintronics device applications. Meanwhile, from chemistry aspect, graphene is the extreme of condensed polycyclic hydrocarbon molecules extrapolated to infinite size. Here, the concept on aromaticity, which organic chemists utilize, is applicable. Interesting issues appearing between physics and chemistry are pronounced in nanosized graphene (nanographene), as we recognize the importance of the shape of nanographene in understanding its electronic structure. This book comprehensively discusses the fundamental issues related to the electronic, magnetic, and chemical properties of condensed polycyclic hyodrocarbon molecules, nanographene, and graphene.
Download or read book Nanocarbon Inorganic Hybrids written by Dominik Eder and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-08-20 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanocarbon-Inorganic Hybrids is dedicated exclusively to the new family of functional materials, covering a multidisciplinary research field that combines materials science, chemistry and physics with nanotechnology and applied energy science. It provides a concise introduction into fundamental principles of nanocarbons, defines hybrids and composites, explains the physics behind sustainability, and illustrates requirements for successful implementation in energy applications. It further reviews the current research on developing concepts for designing nanocarbon hybrids, unravels mechanistic details of interfacial electron transfer processes and highlights future challenges and perspectives associated with exploiting these exciting new materials in commercial energy applications and beyond. This comprehensively written book is indispensable for Master and PhD students seeking to become familiar with a modern fi eld of knowledge-driven material science as well as for senior researchers and industrial staff scientists who explore the frontiers of knowledge.
Download or read book Silicon Carbide and Related Materials 2013 written by Hajime Okumura and published by Trans Tech Publications Ltd. This book was released on 2014-02-26 with total page 1252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected, peer reviewed papers from the 15th International Conference on Silicon Carbide and Related Materials (ICSCRM 2013), September 29 – October 4, 2013, Miyazaki, Japan
Download or read book 2D Materials for Nanoelectronics written by Michel Houssa and published by CRC Press. This book was released on 2016-05-05 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices.Compris
Download or read book Handbook of Silicon Carbide Materials and Devices written by Zhe Chuan Feng and published by CRC Press. This book was released on 2023-07-10 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, Raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, Raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.
Download or read book Carbon Nanomaterials for Electrochemical Energy Technologies written by Shuhui Sun and published by CRC Press. This book was released on 2017-11-20 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers comprehensive coverage of carbon-based nanomaterials and electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, and hydrogen generation and storage, as well as the latest material and new technology development. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, degradation mechanisms, challenges, and strategies. With in-depth discussions ranging from electrochemistry fundamentals to engineering components and applied devices, this all-inclusive reference offers a broad view of various carbon nanomaterials and technologies for electrochemical energy conversion and storage devices.