Download or read book Thermal Methods written by Abdolhossein Hemmati-Sarapardeh and published by Gulf Professional Publishing. This book was released on 2023-04-18 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Methods, Volume Two, the latest release in the Enhanced Oil Recovery series, helps engineers focus on the latest developments in this fast-growing area. In the book, different techniques are described in addition to the latest technologies in data mining and hybrid processes. Supported field case studies are included to illustrate a bridge between research and practical applications, making it useful for both academics and practicing engineers. Structured to start with thermal concepts and steam flooding, the book's editors then advance to more complex content, guiding engineers into areas such as hybrid thermal methods and edgier technologies that bridge solar and nuclear energy. Supported by a full spectrum of contributors, this book gives petroleum engineers and researchers the latest research developments and field applications to drive innovation for the future of energy. - Presents the latest understanding surrounding the updated research and practical applications specific to thermal enhanced oil recovery methods - Provides an analysis of editors' research on available technology, including hybrid thermal-solvent processes and dual pipe configurations - Teaches about additional methods, such as data mining applications, and economic and environmental considerations
Download or read book Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs written by Alireza Bahadori and published by Gulf Professional Publishing. This book was released on 2018-08-18 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs delivers the proper foundation on all types of currently utilized and upcoming enhanced oil recovery, including methods used in emerging unconventional reservoirs. Going beyond traditional secondary methods, this reference includes advanced water-based EOR methods which are becoming more popular due to CO2 injection methods used in EOR and methods specific to target shale oil and gas activity. Rounding out with a chapter devoted to optimizing the application and economy of EOR methods, the book brings reservoir and petroleum engineers up-to-speed on the latest studies to apply. Enhanced oil recovery continues to grow in technology, and with ongoing unconventional reservoir activity underway, enhanced oil recovery methods of many kinds will continue to gain in studies and scientific advancements. Reservoir engineers currently have multiple outlets to gain knowledge and are in need of one product go-to reference. - Explains enhanced oil recovery methods, focusing specifically on those used for unconventional reservoirs - Includes real-world case studies and examples to further illustrate points - Creates a practical and theoretical foundation with multiple contributors from various backgrounds - Includes a full range of the latest and future methods for enhanced oil recovery, including chemical, waterflooding, CO2 injection and thermal
Download or read book Petroleum Reservoir Engineering Practice written by Nnaemeka Ezekwe and published by Pearson Education. This book was released on 2010-09-09 with total page 1023 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Complete, Up-to-Date, Practical Guide to Modern Petroleum Reservoir Engineering This is a complete, up-to-date guide to the practice of petroleum reservoir engineering, written by one of the world’s most experienced professionals. Dr. Nnaemeka Ezekwe covers topics ranging from basic to advanced, focuses on currently acceptable practices and modern techniques, and illuminates key concepts with realistic case histories drawn from decades of working on petroleum reservoirs worldwide. Dr. Ezekwe begins by discussing the sources and applications of basic rock and fluid properties data. Next, he shows how to predict PVT properties of reservoir fluids from correlations and equations of state, and presents core concepts and techniques of reservoir engineering. Using case histories, he illustrates practical diagnostic analysis of reservoir performance, covers essentials of transient well test analysis, and presents leading secondary and enhanced oil recovery methods. Readers will find practical coverage of experience-based procedures for geologic modeling, reservoir characterization, and reservoir simulation. Dr. Ezekwe concludes by presenting a set of simple, practical principles for more effective management of petroleum reservoirs. With Petroleum Reservoir Engineering Practice readers will learn to • Use the general material balance equation for basic reservoir analysis • Perform volumetric and graphical calculations of gas or oil reserves • Analyze pressure transients tests of normal wells, hydraulically fractured wells, and naturally fractured reservoirs • Apply waterflooding, gasflooding, and other secondary recovery methods • Screen reservoirs for EOR processes, and implement pilot and field-wide EOR projects. • Use practical procedures to build and characterize geologic models, and conduct reservoir simulation • Develop reservoir management strategies based on practical principles Throughout, Dr. Ezekwe combines thorough coverage of analytical calculations and reservoir modeling as powerful tools that can be applied together on most reservoir analyses. Each topic is presented concisely and is supported with copious examples and references. The result is an ideal handbook for practicing engineers, scientists, and managers—and a complete textbook for petroleum engineering students.
Download or read book Advances in the Study of Fractured Reservoirs written by G.H. Spence and published by Geological Society of London. This book was released on 2014-08-27 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Naturally fractured reservoirs constitute a substantial percentage of remaining hydrocarbon resources; they create exploration targets in otherwise impermeable rocks, including under-explored crystalline basement; and they can be used as geological stores for anthropogenic carbon dioxide. Their complex behaviour during production has traditionally proved difficult to predict, causing a large degree of uncertainty in reservoir development. The applied study of naturally fractured reservoirs seeks to constrain this uncertainty by developing new understanding, and is necessarily a broad, integrated, interdisciplinary topic. This book addresses some of the challenges and advances in knowledge, approaches, concepts, and methods used to characterize the interplay of rock matrix and fracture networks, relevant to fluid flow and hydrocarbon recovery. Topics include: describing, characterizing and identifying controls on fracture networks from outcrops, cores, geophysical data, digital and numerical models; geomechanical influences on reservoir behaviour; numerical modelling and simulation of fluid flow; and case studies of the exploration and development of carbonate, siliciclastic and metamorphic naturally fractured reservoirs.
Download or read book Hydraulic Proppant Fracturing and Gravel Packing written by D. Mader and published by Elsevier. This book was released on 1989-03-01 with total page 1277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many aspects of hydraulic proppant fracturing have changed since its innovation in 1947. The main significance of this book is its combination of technical and economical aspects to provide an integrated overview of the various applications of proppants in hydraulic fracturing, and gravel in sand control. The monitoring of fractures and gravel packs by well-logging and seismic techniques is also included.The book's extensive coverage of the subject should be of special interest to reservoir geologists and engineers, production engineers and technologists, and well log analysts.
Download or read book Enhanced Oil Recovery Field Case Studies written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2013-04-10 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies, benefitting academicians and oil company practitioners alike. - Strikes an ideal balance between theory and practice - Focuses on practical problems, underlying theoretical and modeling methods, and operational parameters - Designed for technical professionals, covering the fundamental as well as the advanced aspects of EOR
Download or read book Advances in Fluid Solid Coupling Processes between Fractures and Porous Rocks Experimental and Numerical Investigation written by Shiming Wei and published by Frontiers Media SA. This book was released on with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is the key measure for improving recovery of unconventional oil and gas reservoirs. Prediction of fracture morphology and productivity after fracturing is critical for fracturing design and optimization. The hydraulic fracturing process is to open porous rocks by artificially injecting highly compressed fluid, and the hydraulic fracture will be closed under the compaction of in-situ stress during the production process. In this regard, hydraulic fracturing and production processes are both fluid-solid coupling processes involving fractures and porous rocks. This Research Topic aims to gather the latest studies addressing how to improve the prediction accuracy of hydraulic fracturing morphology and post-fracturing productivity through experimental and numerical investigation. The experimental research shall underline hydraulic fracturing and fracture conductivity experiments and associated experimental methods, while the numerical research shall pay particular attention to discrete fracture network models, including the calculation efficiency and accuracy as well as the applicability.
Download or read book Multiphase Fluid Flow in Porous and Fractured Reservoirs written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2015-09-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today's reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. - Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs - Explains analytical solutions and approaches as well as applications to modeling verification for today's reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency - Utilize practical codes and programs featured from online companion website
Download or read book Chemical Enhanced Oil Recovery written by Patrizio Raffa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).
Download or read book Flow and Contaminant Transport in Fractured Rock written by Jacob Bear and published by Academic Press. This book was released on 2012-12-02 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past two or three decades, fractured rock domains have received increasing attention not only in reservoir engineering and hydrology, but also in connection with geological isolation of radioactive waste. Locations in both the saturated and unsaturated zones have been under consideration because such repositories are sources of heat and potential sources of groundwater contamination. Thus, in addition to the transport of mass of fluid phases in single and multiphase flow, the issues of heat transport and mass transport of components have to be addressed.
Download or read book Efficient Simulation of Thermal Enhanced Oil Recovery Processes written by Zhouyuan Zhu and published by Stanford University. This book was released on 2011 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulating thermal processes is usually computationally expensive because of the complexity of the problem and strong nonlinearities encountered. In this work, we explore novel and efficient simulation techniques to solve thermal enhanced oil recovery problems. We focus on two major topics: the extension of streamline simulation for thermal enhanced oil recovery and the efficient simulation of chemical reaction kinetics as applied to the in-situ combustion process. For thermal streamline simulation, we first study the extension to hot water flood processes, in which we have temperature induced viscosity changes and thermal volume changes. We first compute the pressure field on an Eulerian grid. We then solve for the advective parts of the mass balance and energy equations along the individual streamlines, accounting for the compressibility effects. At the end of each global time step, we account for the nonadvective terms on the Eulerian grid along with gravity using operator splitting. We test our streamline simulator and compare the results with a commercial thermal simulator. Sensitivity studies for compressibility, gravity and thermal conduction effects are presented. We further extended our thermal streamline simulation to steam flooding. Steam flooding exhibits large volume changes and compressibility associated with the phase behavior of steam, strong gravity segregation and override, and highly coupled energy and mass transport. To overcome these challenges we implement a novel pressure update along the streamlines, a Glowinski scheme operator splitting and a preliminary streamline/finite volume hybrid approach. We tested our streamline simulator on a series of test cases. We compared our thermal streamline results with those computed by a commercial thermal simulator for both accuracy and efficiency. For the cases investigated, we are able to retain solution accuracy, while reducing computational cost and gaining connectivity information from the streamlines. These aspects are useful for reservoir engineering purposes. In traditional thermal reactive reservoir simulation, mass and energy balance equations are solved numerically on discretized reservoir grid blocks. The reaction terms are calculated through Arrhenius kinetics using cell-averaged properties, such as averaged temperature and reactant concentrations. For the in-situ combustion process, the chemical reaction front is physically very narrow, typically a few inches thick. To capture accurately this front, centimeter-sized grids are required that are orders of magnitude smaller than the affordable grid block sizes for full field reservoir models. To solve this grid size effect problem, we propose a new method based on a non-Arrhenius reaction upscaling approach. We do not resolve the combustion front on the grid, but instead use a subgrid-scale model that captures the overall effects of the combustion reactions on flow and transport, i.e. the amount of heat released, the amount of oil burned and the reaction products generated. The subgrid-scale model is calibrated using fine-scale highly accurate numerical simulation and laboratory experiments. This approach significantly improves the computational speed of in-situ combustion simulation as compared to traditional methods. We propose the detailed procedures to implement this methodology in a field-scale simulator. Test cases illustrate the solution consistency when scaling up the grid sizes in multidimensional heterogeneous problems. The methodology is also applicable to other subsurface reactive flow modeling problems with fast chemical reactions and sharp fronts. Displacement front stability is a major concern in the design of all the enhanced oil recovery processes. Historically, premature combustion front break through has been an issue for field operations of in-situ combustion. In this work, we perform detailed analysis based on both analytical methods and numerical simulation. We identify the different flow regimes and several driving fronts in a typical 1D ISC process. For the ISC process in a conventional mobile heavy oil reservoir, we identify the most critical front as the front of steam plateau driving the cold oil bank. We discuss the five main contributors for this front stability/instability: viscous force, condensation, heat conduction, coke plugging and gravity. Detailed numerical tests are performed to test and rank the relative importance of all these different effects.
Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
Download or read book Energy Research Abstracts written by and published by . This book was released on 1995 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Unconventional Gas Reservoirs written by M. Rafiqul Islam and published by Elsevier. This book was released on 2014-10-23 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural gas, especially unconventional gas, has an increasingly important role in meeting the world's energy needs. Experts estimate that it has the potential to add anywhere from 60-250% to the global proven gas reserve in the next two decades. To maintain pace with increasing global demand, Unconventional Gas Reservoirs provides the necessary bridge into the newer processes, approaches and designs to help identify these more uncommon reservoirs available and how to maximize its unconventional potential. Loaded with reservoir development and characterization strategies, this book will show you how to: - Recognize the challenges and opportunities surrounding unconventional gas reservoirs - Distinguish among the various types of unconventional reservoirs, such as shale gas, coalbed methane, and tight gas formations - Drill down and quantify the reservoir's economic potential and other critical considerations - Gain practical insights and tools to efficiently identify, appraise, and develop unconventional gas reservoirs - Understand various techniques used to analyze reservoir parameters and performance as well as how they were applied to numerous real-world case studies - Upgrade to the latest information on perspectives and insights with discussion of key differences used for today's unconventional gas characterization versus original conventional methods that failed in the past
Download or read book An Introduction to Reservoir Simulation Using MATLAB GNU Octave written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2019-08-08 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.
Download or read book Fossil Energy Update written by and published by . This book was released on 1977 with total page 1052 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Standard Handbook of Petroleum and Natural Gas Engineering Volume 2 written by William C. Lyons and published by Gulf Professional Publishing. This book was released on 1996-10-16 with total page 1087 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 2 presents the industry standards and practices for reservoir engineering and production engineering. It also looks at all aspects of petroleum economics and shows how to estimate oil and gas reserves.