Download or read book Statistical Theories and Computational Approaches to Turbulence written by Y. Kaneda and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the papers presented at the workshop on Statistical The ories and Computational Approaches to Turbulence: Modern Perspectives and Applications to Global-Scale Flows, held October 10-13, 2001, at Nagoya Uni versity, Nagoya, Japan. Because of recent developments in computational capabilities, the compu tational approach is showing the potential to resolve a much wider range of length and time scales in turbulent physical systems. Nevertheless, even with the largest supercomputers of the foreseeable future, development of adequate modeling techniques for at least some scales of motion will be necessary for practical computations of important problems such as weather forecasting and the prediction and control of global pollution. The more powerful the available machines become, the more demand there will be for precise prediction of the systems. This means that more precise and reliable knowledge of the underlying dynamics will become important, and that more efficient and precise numerical methods best adapted to the new generation of computers will be necessary. The understanding of the nature of unresolved scales then will playa key role in the modeling of turbulent motion. The challenge to turbulence theory here is to elucidate the physics or dynamics of those scales, in particular their sta tistical aspects, and thereby develop models on sound bases to reduce modeling ambiguity. The challenge to the computational method is to develop efficient algorithms suitable for the problems, the machines, and the developed models.
Download or read book Statistical Theory and Modeling for Turbulent Flows written by P. A. Durbin and published by John Wiley & Sons. This book was released on 2011-06-28 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a comprehensive grounding in the subject of turbulence, Statistical Theory and Modeling for Turbulent Flows develops both the physical insight and the mathematical framework needed to understand turbulent flow. Its scope enables the reader to become a knowledgeable user of turbulence models; it develops analytical tools for developers of predictive tools. Thoroughly revised and updated, this second edition includes a new fourth section covering DNS (direct numerical simulation), LES (large eddy simulation), DES (detached eddy simulation) and numerical aspects of eddy resolving simulation. In addition to its role as a guide for students, Statistical Theory and Modeling for Turbulent Flows also is a valuable reference for practicing engineers and scientists in computational and experimental fluid dynamics, who would like to broaden their understanding of fundamental issues in turbulence and how they relate to turbulence model implementation. Provides an excellent foundation to the fundamental theoretical concepts in turbulence. Features new and heavily revised material, including an entire new section on eddy resolving simulation. Includes new material on modeling laminar to turbulent transition. Written for students and practitioners in aeronautical and mechanical engineering, applied mathematics and the physical sciences. Accompanied by a website housing solutions to the problems within the book.
Download or read book Statistical Theory and Modeling for Turbulent Flows written by P. A. Durbin and published by Wiley-Blackwell. This book was released on 2001-03-12 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, and this work offers a grounding in the subject of turbulence, developing both the physical insight and the mathematical framework needed to express the theory. Providing a solid foundation in the key topics in turbulence, this valuable reference resource enables the reader to become a knowledgeable developer of predictive tools. This central and broad ranging topic would be of interest to graduate students in a broad range of subjects, including aeronautical and mechanical engineering, applied mathematics and the physical sciences. The accompanying solutions manual to the text also makes this a valuable teaching tool for lecturers and for practising engineers and scientists in computational and experimental and experimental fluid dynamics.
Download or read book The Mathematical Theory of Turbulence written by M.M. Stanisic and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: "I do not think at all that I am able to present here any procedure of investiga tion that was not perceived long ago by all men of talent; and I do not promise at all that you can find here anything_ quite new of this kind. But I shall take pains to state in clear words the pules and ways of investigation which are followed by ahle men, who in most cases are not even conscious of foZlow ing them. Although I am free from illusion that I shall fully succeed even in doing this, I still hope that the little that is present here may please some people and have some application afterwards. " Bernard Bolzano (Wissenschaftslehre, 1929) The following book results from aseries of lectures on the mathematical theory of turbulence delivered by the author at the Purdue University School of Aeronautics and Astronautics during the past several years, and represents, in fact, a comprehensive account of the author's work with his graduate students in this field. It was my aim in writing this book to give to engineers and scientists a mathematical feeling for a subject, which because of its nonlinear character has resisted mathematical analysis for many years. On account vii i of its refractory nature this subject was categorized as one of seven "elementary catastrophes". The material presented here is designed for a first graduate course in turbulence. The complete course has been taught in one semester.
Download or read book Advanced Approaches in Turbulence written by Paul Durbin and published by Elsevier. This book was released on 2021-07-24 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis
Download or read book Applied Computational Fluid Dynamics and Turbulence Modeling written by Sal Rodriguez and published by Springer Nature. This book was released on 2019-12-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text provides engineering students and practicing professionals with a comprehensive set of practical, hands-on guidelines and dozens of step-by-step examples for performing state-of-the-art, reliable computational fluid dynamics (CFD) and turbulence modeling. Key CFD and turbulence programs are included as well. The text first reviews basic CFD theory, and then details advanced applied theories for estimating turbulence, including new algorithms created by the author. The book gives practical advice on selecting appropriate turbulence models and presents best CFD practices for modeling and generating reliable simulations. The author gathered and developed the book’s hundreds of tips, tricks, and examples over three decades of research and development at three national laboratories and at the University of New Mexico—many in print for the first time in this book. The book also places a strong emphasis on recent CFD and turbulence advancements found in the literature over the past five to 10 years. Readers can apply the author’s advice and insights whether using commercial or national laboratory software such as ANSYS Fluent, STAR-CCM, COMSOL, Flownex, SimScale, OpenFOAM, Fuego, KIVA, BIGHORN, or their own computational tools. Applied Computational Fluid Dynamics and Turbulence Modeling is a practical, complementary companion for academic CFD textbooks and senior project courses in mechanical, civil, chemical, and nuclear engineering; senior undergraduate and graduate CFD and turbulence modeling courses; and for professionals developing commercial and research applications.
Download or read book The Turbulence Problem written by Michael Eckert and published by Springer Nature. This book was released on 2019-10-05 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: On the road toward a history of turbulence, this book focuses on what the actors in this research field have identified as the “turbulence problem”. Turbulent flow rose to prominence as one of the most persistent challenges in science. At different times and in different social and disciplinary settings, the nature of this problem has changed in response to changing research agendas. This book does not seek to provide a comprehensive account, but instead an exemplary exposition on the environments in which problems become the subjects of research agendas, with particular emphasis on the first half of the 20th century.
Download or read book Statistical Mechanics of Turbulent Flows written by Stefan Heinz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulation of technological and environmental flows is very important for many industrial developments. A major challenge related to their modeling is to involve the characteristic turbulence that appears in most of these flows. The traditional way to tackle this question is to use deterministic equations where the effects of turbulence are directly parametrized, i. e. , assumed as functions of the variables considered. However, this approach often becomes problematic, in particular if reacting flows have to be simulated. In many cases, it turns out that appropriate approximations for the closure of deterministic equations are simply unavailable. The alternative to the traditional way of modeling turbulence is to construct stochastic models which explain the random nature of turbulence. The application of such models is very attractive: one can overcome the closure problems that are inherent to deterministic methods on the basis of relatively simple and physically consistent models. Thus, from a general point of view, the use of stochastic methods for turbulence simulations seems to be the optimal way to solve most of the problems related to industrial flow simulations. However, it turns out that this is not as simple as it looks at first glance. The first question concerns the numerical solution of stochastic equations for flows of environmental and technological interest. To calculate industrial flows, 3 one often has to consider a number of grid cells that is of the order of 100 .
Download or read book Homogeneous Turbulence Dynamics written by Pierre Sagaut and published by Springer. This book was released on 2018-03-23 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obtained in different research communities. Mathematical tools and advanced physical models are detailed in dedicated chapters.
Download or read book Vorticity and Turbulence written by Alexandre J. Chorin and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory of turbulence in fluids based on the representation of the flow by means of its vorticity field. It has long been understood that, at least in the case of incompressible flow, the vorticity representation is natural and physically transparent, yet the development of a theory of turbulence in this representation has been slow. The pioneering work of Onsager and of Joyce and Montgomery on the statistical mechanics of two-dimensional vortex systems has only recently been put on a firm mathematical footing, and the three-dimensional theory remains in parts speculative and even controversial. The first three chapters of the book contain a reasonably standard intro duction to homogeneous turbulence (the simplest case); a quick review of fluid mechanics is followed by a summary of the appropriate Fourier theory (more detailed than is customary in fluid mechanics) and by a summary of Kolmogorov's theory of the inertial range, slanted so as to dovetail with later vortex-based arguments. The possibility that the inertial spectrum is an equilibrium spectrum is raised.
Download or read book Non equilibrium Statistical Mechanics and Turbulence written by John Cardy and published by Cambridge University Press. This book was released on 2008-12-11 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained volume introduces modern methods of statistical mechanics in turbulence, with three harmonised lecture courses by world class experts.
Download or read book Computational Models for Turbulent Reacting Flows written by Rodney O. Fox and published by Cambridge University Press. This book was released on 2003-10-30 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Table of contents
Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
Download or read book Statistical Turbulence Modelling For Fluid Dynamics Demystified An Introductory Text For Graduate Engineering Students written by Michael Leschziner and published by World Scientific. This book was released on 2015-08-20 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for self-study or as a companion of lectures delivered to post-graduate students on the subject of the computational prediction of complex turbulent flows. There are several books in the extensive literature on turbulence that deal, in statistical terms, with the phenomenon itself, as well its many manifestations in the context of fluid dynamics. Statistical Turbulence Modelling for Fluid Dynamics — Demystified differs from these and focuses on the physical interpretation of a broad range of mathematical models used to represent the time-averaged effects of turbulence in computational prediction schemes for fluid flow and related transport processes in engineering and the natural environment. It dispenses with complex mathematical manipulations and instead gives physical and phenomenological explanations. This approach allows students to gain a 'feel' for the physical fabric represented by the mathematical structure that describes the effects of turbulence and the models embedded in most of the software currently used in practical fluid-flow predictions, thus counteracting the ill-informed black-box approach to turbulence modelling. This is done by taking readers through the physical arguments underpinning exact concepts, the rationale of approximations of processes that cannot be retained in their exact form, and essential calibration steps to which the resulting models are subjected by reference to theoretically established behaviour of, and experimental data for, key canonical flows.
Download or read book Approximate Deconvolution Models of Turbulence written by William J. Layton and published by Springer. This book was released on 2012-01-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.
Download or read book Theories of Turbulence written by Martin Oberlack and published by Springer. This book was released on 2014-05-04 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.
Download or read book Mathematical and Physical Theory of Turbulence Volume 250 written by John Cannon and published by CRC Press. This book was released on 2006-06-15 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together ex