Download or read book Statistical Physics Optimization Inference and Message Passing Algorithms written by Florent Krzakala and published by Oxford University Press. This book was released on 2015-12-17 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade, there have been an increasing convergence of interest and methods between theoretical physics and fields as diverse as probability, machine learning, optimization and compressed sensing. In particular, many theoretical and applied works in statistical physics and computer science have relied on the use of message passing algorithms and their connection to statistical physics of spin glasses. The aim of this book, especially adapted to PhD students, post-docs, and young researchers, is to present the background necessary for entering this fast developing field.
Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.
Download or read book Statistical Physics of Spin Glasses and Information Processing written by Hidetoshi Nishimori and published by Clarendon Press. This book was released on 2001 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This superb new book is one of the first publications in recent years to provide a broad overview of this interdisciplinary field. Most of the book is written in a self contained manner, assuming only a general knowledge of statistical mechanics and basic probabilty theory . It provides the reader with a sound introduction to the field and to the analytical techniques necessary to follow its most recent developments
Download or read book Computational Intelligence Methods for Bioinformatics and Biostatistics written by Massimo Bartoletti and published by Springer. This book was released on 2019-02-28 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 14th International Meeting on Computational. Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2017, held in Cagliari, Italy, in September 2017. The 19 revised full papers presented were carefully reviewed and selected from 44 submissions. The papers deal with the application of computational intelligence to open problems in bioinformatics, biostatistics, systems and synthetic biology, medical informatics, computational approaches to life sciences in general.
Download or read book Perturbations Optimization and Statistics written by Tamir Hazan and published by MIT Press. This book was released on 2017-09-22 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: A description of perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees. In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview. Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks.
Download or read book Modeling the 3D Conformation of Genomes written by Guido Tiana and published by CRC Press. This book was released on 2019-01-15 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a timely summary of physical modeling approaches applied to biological datasets that describe conformational properties of chromosomes in the cell nucleus. Chapters explain how to convert raw experimental data into 3D conformations, and how to use models to better understand biophysical mechanisms that control chromosome conformation. The coverage ranges from introductory chapters to modeling aspects related to polymer physics, and data-driven models for genomic domains, the entire human genome, epigenome folding, chromosome structure and dynamics, and predicting 3D genome structure.
Download or read book Encyclopedia of Geology written by and published by Academic Press. This book was released on 2020-12-16 with total page 5634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Encyclopedia of Geology, Second Edition presents in six volumes state-of-the-art reviews on the various aspects of geologic research, all of which have moved on considerably since the writing of the first edition. New areas of discussion include extinctions, origins of life, plate tectonics and its influence on faunal provinces, new types of mineral and hydrocarbon deposits, new methods of dating rocks, and geological processes. Users will find this to be a fundamental resource for teachers and students of geology, as well as researchers and non-geology professionals seeking up-to-date reviews of geologic research. Provides a comprehensive and accessible one-stop shop for information on the subject of geology, explaining methodologies and technical jargon used in the field Highlights connections between geology and other physical and biological sciences, tackling research problems that span multiple fields Fills a critical gap of information in a field that has seen significant progress in past years Presents an ideal reference for a wide range of scientists in earth and environmental areas of study
Download or read book Graphical Models Exponential Families and Variational Inference written by Martin J. Wainwright and published by Now Publishers Inc. This book was released on 2008 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.
Download or read book Factor Graphs for Robot Perception written by Frank Dellaert and published by . This book was released on 2017-08-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the use of factor graphs for the modeling and solving of large-scale inference problems in robotics. Factor graphs are introduced as an economical representation within which to formulate the different inference problems, setting the stage for the subsequent sections on practical methods to solve them.
Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Download or read book Functional Imaging and Modeling of the Heart written by Olivier Bernard and published by Springer Nature. This book was released on 2023-06-15 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 12th International Conference on Functional Imaging and Modeling of the Heart, held in Lyon, France, in June 2023. The 72 full papers were carefully reviewed and selected from 80 submissions. The focus of the papers is on following topics: increased imaging resolutions, data explosion, sophistication of computational models and advent of AI frameworks, while new imaging modalities have emerged (e.g. combined PET-MRI, Spectral CT).
Download or read book A Survey of Statistical Network Models written by Anna Goldenberg and published by Now Publishers Inc. This book was released on 2010 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.
Download or read book Optimization with Sparsity Inducing Penalties written by Francis Bach and published by . This book was released on 2011-12-23 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate nonsmooth norms. Optimization with Sparsity-Inducing Penalties presents optimization tools and techniques dedicated to such sparsity-inducing penalties from a general perspective. It covers proximal methods, block-coordinate descent, reweighted ?2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provides an extensive set of experiments to compare various algorithms from a computational point of view. The presentation of Optimization with Sparsity-Inducing Penalties is essentially based on existing literature, but the process of constructing a general framework leads naturally to new results, connections and points of view. It is an ideal reference on the topic for anyone working in machine learning and related areas.
Download or read book Statistical Physics Optimization Inference and Message Passing Algorithms written by Florent Krzakala and published by Oxford University Press. This book was released on 2016 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade, there have been an increasing convergence of interest and methods between theoretical physics and fields as diverse as probability, machine learning, optimization and compressed sensing. In particular, many theoretical and applied works in statistical physics and computer science have relied on the use of message passing algorithms and their connection to statistical physics of spin glasses. The aim of this book, especially adapted to PhD students, post-docs, and young researchers, is to present the background necessary for entering this fast developing field.