Download or read book Statistical Methods for the Social Sciences written by Alan Agresti and published by . This book was released on 2013-07-30 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth edition has an even stronger emphasis on concepts and applications, with greater attention to "real data" both in the examples and exercises. The mathematics is still downplayed, in particular probability, which is all too often a stumbling block for students. On the other hand, the text is not a cookbook. Reliance on an overly simplistic recipe-based approach to statistics is not the route to good statistical practice. Changes in the Fourth Edition: Since the first edition, the increase in computer power coupled with the continued improvement and accessibility of statistical software has had a major impact on the way social scientists analyze data. Because of this, this book does not cover the traditional shortcut hand-computational formulas and approximations. The presentation of computationally complex methods, such as regression, emphasizes interpretation of software output rather than the formulas for performing the analysis. Teh text contains numerous sample printouts, mainly in the style of SPSS and occasionaly SAS, both in chapter text and homework problems. This edition also has an appendix explaining how to apply SPSS and SAS to conduct the methods of each chapter and a website giving links to information about other software.
Download or read book Using Statistical Methods in Social Science Research written by Soleman H. Abu-Bader and published by Oxford University Press. This book was released on 2011-07-01 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Using Statistical Methods, Soleman Abu-Bader detects and addresses the gaps between the research and data analysis of the classroom environment and the practitioner's office. This book not only guides social scientists through different tests, but also provides students and researchers alike with information that will help them in their own practice. With focus on the purpose, rationale, and assumptions made by each statistical test, and a plethora of research examples that clearly display their applicability and function in real-world practice, Professor Abu-Bader creates a step-by-step description of the process needed to clearly organize, choose a test or statistical technique, analyze, interpret, and report research findings.
Download or read book Making Sense of Statistical Methods in Social Research written by Keming Yang and published by SAGE. This book was released on 2010-03-25 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making Sense of Statistical Methods in Social Research is a critical introduction to the use of statistical methods in social research. It provides a unique approach to statistics that concentrates on helping social researchers think about the conceptual basis for the statistical methods they′re using. Whereas other statistical methods books instruct students in how to get through the statistics-based elements of their chosen course with as little mathematical knowledge as possible, this book aims to improve students′ statistical literacy, with the ultimate goal of turning them into competent researchers. Making Sense of Statistical Methods in Social Research contains careful discussion of the conceptual foundation of statistical methods, specifying what questions they can, or cannot, answer. The logic of each statistical method or procedure is explained, drawing on the historical development of the method, existing publications that apply the method, and methodological discussions. Statistical techniques and procedures are presented not for the purpose of showing how to produce statistics with certain software packages, but as a way of illuminating the underlying logic behind the symbols. The limited statistical knowledge that students gain from straight forward ′how-to′ books makes it very hard for students to move beyond introductory statistics courses to postgraduate study and research. This book should help to bridge this gap.
Download or read book Statistical Methods in Social Science Research written by S P Mukherjee and published by Springer. This book was released on 2018-10-05 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method – as distinct from a ‘science’ related to any one type of phenomena – is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.
Download or read book Statistics for the Social Sciences written by Russell T. Warne and published by Cambridge University Press. This book was released on 2020-12-17 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of Statistics for the Social Sciences prepares students from a wide range of disciplines to interpret and learn the statistical methods critical to their field of study. By using the General Linear Model (GLM), the author builds a foundation that enables students to see how statistical methods are interrelated enabling them to build on the basic skills. The author makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this edition will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting, and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice, and reflection questions.
Download or read book Statistical Methods for the Social and Behavioural Sciences written by David B. Flora and published by SAGE. This book was released on 2017-12-11 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods in modern research increasingly entail developing, estimating and testing models for data. Rather than rigid methods of data analysis, the need today is for more flexible methods for modelling data. In this logical, easy-to-follow and exceptionally clear book, David Flora provides a comprehensive survey of the major statistical procedures currently used. His innovative model-based approach teaches you how to: Understand and choose the right statistical model to fit your data Match substantive theory and statistical models Apply statistical procedures hands-on, with example data analyses Develop and use graphs to understand data and fit models to data Work with statistical modeling principles using any software package Learn by applying, with input and output files for R, SAS, SPSS, and Mplus. Statistical Methods for the Social and Behavioural Sciences: A Model Based Approach is the essential guide for those looking to extend their understanding of the principles of statistics, and begin using the right statistical modeling method for their own data. It is particularly suited to second or advanced courses in statistical methods across the social and behavioural sciences.
Download or read book Quantitative Methods for the Social Sciences written by Daniel Stockemer and published by Springer. This book was released on 2018-11-19 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an essential introduction to survey research and quantitative methods. Building on the premise that statistical methods need to be learned in a practical fashion, the book guides students through the various steps of the survey research process and helps to apply those steps toward a real example. In detail, the textbook introduces students to the four pillars of survey research and quantitative analysis: (1) the importance of survey research, (2) preparing a survey, (3) conducting a survey and (4) analyzing a survey. Students are shown how to create their own questionnaire based on some theoretically derived hypotheses to achieve empirical findings for a solid dataset. Lastly, they use said data to test their hypotheses in a bivariate and multivariate realm. The book explains the theory, rationale and mathematical foundations of these tests. In addition, it provides clear instructions on how to conduct the tests in SPSS and Stata. Given the breadth of its coverage, the textbook is suitable for introductory statistics, survey research or quantitative methods classes in the social sciences.
Download or read book Statistical Modeling and Inference for Social Science written by Sean Gailmard and published by Cambridge University Press. This book was released on 2014-06-09 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.
Download or read book Statistics for the Social Sciences written by R. Mark Sirkin and published by SAGE Publications, Incorporated. This book was released on 1999-05-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Do your students lack confidence in handling quantitative work? Do they get confused about how to enter statistical data on SAS and SPSS programs? This Second Edition of Mark Sirkin's popular textbook is the solution for these dilemmas. The book progresses from concepts that require little computational work to the more demanding. It emphasizes utilization so that students appreciate the usefulness of statistics and shows how the interpretation of data is related to the methods by which data was obtained. The author includes coverage of the scientific method, levels of measurement and the interpretation of tables.
Download or read book Data Analysis for Social Science written by Elena Llaudet and published by Princeton University Press. This book was released on 2022-11-29 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Download or read book Quantitative Social Science written by Kosuke Imai and published by Princeton University Press. This book was released on 2021-03-16 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
Download or read book Bayesian Statistics for the Social Sciences written by David Kaplan and published by Guilford Publications. This book was released on 2014-07-23 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between traditional classical statistics and a Bayesian approach, David Kaplan provides readers with the concepts and practical skills they need to apply Bayesian methodologies to their data analysis problems. Part I addresses the elements of Bayesian inference, including exchangeability, likelihood, prior/posterior distributions, and the Bayesian central limit theorem. Part II covers Bayesian hypothesis testing, model building, and linear regression analysis, carefully explaining the differences between the Bayesian and frequentist approaches. Part III extends Bayesian statistics to multilevel modeling and modeling for continuous and categorical latent variables. Kaplan closes with a discussion of philosophical issues and argues for an "evidence-based" framework for the practice of Bayesian statistics. User-Friendly Features *Includes worked-through, substantive examples, using large-scale educational and social science databases, such as PISA (Program for International Student Assessment) and the LSAY (Longitudinal Study of American Youth). *Utilizes open-source R software programs available on CRAN (such as MCMCpack and rjags); readers do not have to master the R language and can easily adapt the example programs to fit individual needs. *Shows readers how to carefully warrant priors on the basis of empirical data. *Companion website features data and code for the book's examples, plus other resources.
Download or read book Data Analytics for the Social Sciences written by G. David Garson and published by Routledge. This book was released on 2021-11-30 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.
Download or read book Statistical Methods for Social Scientists written by Eric A. Hanushek and published by Academic Press. This book was released on 2013-10-22 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aspects of this text which we believe are novel, at least in degree, include: an effort to motivate different sections with practical examples and an empirical orientation; an effort to intersperse several easily motivated examples throughout the book and to maintain some continuity in these examples; and the extensive use of Monte Carlo simulations to demonstrate particular aspects of the problems and estimators being considered. In terms of material being presented, the unique aspects include the first chapter which attempts to address the use of empirical methods in the social sciences, the seventh chapter which considers models with discrete dependent variables and unobserved variables. Clearly these last two topics in particular are quite advanced--more advanced than material that is currently available on the subject. These last two topics are also currently experiencing rapid development and are not adequately described in most other texts.
Download or read book Statistical Power Analysis for the Social and Behavioral Sciences written by Xiaofeng Steven Liu and published by Routledge. This book was released on 2013-11-07 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.
Download or read book Statistical Methods written by Rudolf J. Freund and published by Elsevier. This book was released on 2003-01-07 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Download or read book Data Analysis for the Social Sciences written by Douglas Bors and published by SAGE. This book was released on 2018-01-08 with total page 1115 pages. Available in PDF, EPUB and Kindle. Book excerpt: ′This book fosters in-depth understanding of the logic underpinning the most common statistical tests within the behavioural sciences. By emphasising the shared ground between these tests, the author provides crucial scaffolding for students as they embark upon their research journey.′ —Ruth Horry, Psychology, Swansea University ′This unique text presents the conceptual underpinnings of statistics as well as the computation and application of statistics to real-life situations--a combination rarely covered in one book. A must-have for students learning statistical techniques and a go-to handbook for experienced researchers.′ —Barbra Teater, Social Work, College of Staten Island, City University of New York Accessible, engaging, and informative, this book will help any social science student approach statistics with confidence. With a well-paced and well-judged integrated approach rather than a simple linear trajectory, this book progresses at a realistic speed that matches the pace at which statistics novices actually learn. Packed with global, interdisciplinary examples that ground statistical theory and concepts in real-world situations, it shows students not only how to apply newfound knowledge using IBM SPSS Statistics, but also why they would want to. Spanning statistics basics like variables, constants, and sampling through to t-tests, multiple regression and factor analysis, it builds statistical literacy while also covering key research principles like research questions, error types and results reliability. It shows you how to: Describe data with graphs, tables, and numbers Calculate probability and value distributions Test a priori and post hoc hypotheses Conduct Chi-squared tests and observational studies Structure ANOVA, ANCOVA, and factorial designs Supported by lots of visuals and a website with interactive demonstrations, author video, and practice datasets, this book is the student-focused companion to support students through their statistics journeys.