Download or read book An Introduction to Statistical Genetic Data Analysis written by Melinda C. Mills and published by MIT Press. This book was released on 2020-02-18 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website.
Download or read book Statistical Population Genomics written by Julien Y Dutheil and published by . This book was released on 2020-10-08 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access volume presents state-of-the-art inference methods in population genomics, focusing on data analysis based on rigorous statistical techniques. After introducing general concepts related to the biology of genomes and their evolution, the book covers state-of-the-art methods for the analysis of genomes in populations, including demography inference, population structure analysis and detection of selection, using both model-based inference and simulation procedures. Last but not least, it offers an overview of the current knowledge acquired by applying such methods to a large variety of eukaryotic organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, pointers to the relevant literature, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Statistical Population Genomics aims to promote and ensure successful applications of population genomic methods to an increasing number of model systems and biological questions. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Download or read book High dimensional Data Analysis written by Tony Cai;Xiaotong Shen and published by . This book was released on with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.
Download or read book Handbook of Statistical Genomics written by David J. Balding and published by John Wiley & Sons. This book was released on 2019-07-09 with total page 1740 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.
Download or read book Handbook of Statistical Genetics written by David J. Balding and published by John Wiley & Sons. This book was released on 2008-06-10 with total page 1616 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook for Statistical Genetics is widely regarded as the reference work in the field. However, the field has developed considerably over the past three years. In particular the modeling of genetic networks has advanced considerably via the evolution of microarray analysis. As a consequence the 3rd edition of the handbook contains a much expanded section on Network Modeling, including 5 new chapters covering metabolic networks, graphical modeling and inference and simulation of pedigrees and genealogies. Other chapters new to the 3rd edition include Human Population Genetics, Genome-wide Association Studies, Family-based Association Studies, Pharmacogenetics, Epigenetics, Ethic and Insurance. As with the second Edition, the Handbook includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between the chapters, tying the different areas together. With heavy use of up-to-date examples, real-life case studies and references to web-based resources, this continues to be must-have reference in a vital area of research. Edited by the leading international authorities in the field. David Balding - Department of Epidemiology & Public Health, Imperial College An advisor for our Probability & Statistics series, Professor Balding is also a previous Wiley author, having written Weight-of-Evidence for Forensic DNA Profiles, as well as having edited the two previous editions of HSG. With over 20 years teaching experience, he’s also had dozens of articles published in numerous international journals. Martin Bishop – Head of the Bioinformatics Division at the HGMP Resource Centre As well as the first two editions of HSG, Dr Bishop has edited a number of introductory books on the application of informatics to molecular biology and genetics. He is the Associate Editor of the journal Bioinformatics and Managing Editor of Briefings in Bioinformatics. Chris Cannings – Division of Genomic Medicine, University of Sheffield With over 40 years teaching in the area, Professor Cannings has published over 100 papers and is on the editorial board of many related journals. Co-editor of the two previous editions of HSG, he also authored a book on this topic.
Download or read book Principles of Statistical Genomics written by Shizhong Xu and published by Springer Science & Business Media. This book was released on 2012-09-10 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical genomics is a rapidly developing field, with more and more people involved in this area. However, a lack of synthetic reference books and textbooks in statistical genomics has become a major hurdle on the development of the field. Although many books have been published recently in bioinformatics, most of them emphasize DNA sequence analysis under a deterministic approach. Principles of Statistical Genomics synthesizes the state-of-the-art statistical methodologies (stochastic approaches) applied to genome study. It facilitates understanding of the statistical models and methods behind the major bioinformatics software packages, which will help researchers choose the optimal algorithm to analyze their data and better interpret the results of their analyses. Understanding existing statistical models and algorithms assists researchers to develop improved statistical methods to extract maximum information from their data. Resourceful and easy to use, Principles of Statistical Genomics is a comprehensive reference for researchers and graduate students studying statistical genomics.
Download or read book Computational Genomics with R written by Altuna Akalin and published by CRC Press. This book was released on 2020-12-16 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Download or read book Mathematical and Statistical Methods for Genetic Analysis written by Kenneth Lange and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.
Download or read book Statistical Genomics written by Ben Hui Liu and published by CRC Press. This book was released on 2017-11-22 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genomics, the mapping of the entire genetic complement of an organism, is the new frontier in biology. This handbook on the statistical issues of genomics covers current methods and the tried-and-true classical approaches.
Download or read book Statistical Genomics written by Ewy Mathé and published by Humana. This book was released on 2016-03-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume expands on statistical analysis of genomic data by discussing cross-cutting groundwork material, public data repositories, common applications, and representative tools for operating on genomic data. Statistical Genomics: Methods and Protocols is divided into four sections. The first section discusses overview material and resources that can be applied across topics mentioned throughout the book. The second section covers prominent public repositories for genomic data. The third section presents several different biological applications of statistical genomics, and the fourth section highlights software tools that can be used to facilitate ad-hoc analysis and data integration. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible analysis protocols, and tips on troubleshooting and avoiding known pitfalls. Through and practical, Statistical Genomics: Methods and Protocols, explores a range of both applications and tools and is ideal for anyone interested in the statistical analysis of genomic data.
Download or read book Statistics in Human Genetics and Molecular Biology written by Cavan Reilly and published by CRC Press. This book was released on 2009-06-19 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the roles of different segments of DNA, Statistics in Human Genetics and Molecular Biology provides a basic understanding of problems arising in the analysis of genetics and genomics. It presents statistical applications in genetic mapping, DNA/protein sequence alignment, and analyses of gene expression data from microarray experiments.
Download or read book Molecular Genetic and Statistical Techniques for Behavioral and Neural Research written by Robert T. Gerlai and published by Academic Press. This book was released on 2018-04-24 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior, a critical piece of the puzzle for clinicians, scientists, course instructors and advanced undergraduate and graduate students. Chapters examine neuroinformatics, genetic and neurobehavioral databases and data mining, also providing an analysis of natural genetic variation and principles and applications of forward (mutagenesis) and reverse genetics (gene targeting). In addition, the book discusses gene expression and its role in brain function and behavior, along with ethical issues in the use of animals in genetics testing. Written and edited by leading international experts, this book provides a clear presentation of the frontiers of basic research as well as translationally relevant techniques that are used by neurobehavioral geneticists. - Focuses on new techniques, including electrocorticography, functional mapping, stereo EEG, motor evoked potentials, optical coherence tomography, magnetoencephalography, laser evoked potentials, transmagnetic stimulation, and motor evoked potentials - Presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior - Written and edited by leading international experts
Download or read book Statistical Methods in Molecular Evolution written by Rasmus Nielsen and published by Springer Science & Business Media. This book was released on 2006-05-06 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of molecular evolution, inferences about past evolutionary events are made using molecular data from currently living species. With the availability of genomic data from multiple related species, molecular evolution has become one of the most active and fastest growing fields of study in genomics and bioinformatics. Most studies in molecular evolution rely heavily on statistical procedures based on stochastic process modelling and advanced computational methods including high-dimensional numerical optimization and Markov Chain Monte Carlo. This book provides an overview of the statistical theory and methods used in studies of molecular evolution. It includes an introductory section suitable for readers that are new to the field, a section discussing practical methods for data analysis, and more specialized sections discussing specific models and addressing statistical issues relating to estimation and model choice. The chapters are written by the leaders of field and they will take the reader from basic introductory material to the state-of-the-art statistical methods. This book is suitable for statisticians seeking to learn more about applications in molecular evolution and molecular evolutionary biologists with an interest in learning more about the theory behind the statistical methods applied in the field. The chapters of the book assume no advanced mathematical skills beyond basic calculus, although familiarity with basic probability theory will help the reader. Most relevant statistical concepts are introduced in the book in the context of their application in molecular evolution, and the book should be accessible for most biology graduate students with an interest in quantitative methods and theory. Rasmus Nielsen received his Ph.D. form the University of California at Berkeley in 1998 and after a postdoc at Harvard University, he assumed a faculty position in Statistical Genomics at Cornell University. He is currently an Ole Rømer Fellow at the University of Copenhagen and holds a Sloan Research Fellowship. His is an associate editor of the Journal of Molecular Evolution and has published more than fifty original papers in peer-reviewed journals on the topic of this book. From the reviews: "...Overall this is a very useful book in an area of increasing importance." Journal of the Royal Statistical Society "I find Statistical Methods in Molecular Evolution very interesting and useful. It delves into problems that were considered very difficult just several years ago...the book is likely to stimulate the interest of statisticians that are unaware of this exciting field of applications. It is my hope that it will also help the 'wet lab' molecular evolutionist to better understand mathematical and statistical methods." Marek Kimmel for the Journal of the American Statistical Association, September 2006 "Who should read this book? We suggest that anyone who deals with molecular data (who does not?) and anyone who asks evolutionary questions (who should not?) ought to consult the relevant chapters in this book." Dan Graur and Dror Berel for Biometrics, September 2006 "Coalescence theory facilitates the merger of population genetics theory with phylogenetic approaches, but still, there are mostly two camps: phylogeneticists and population geneticists. Only a few people are moving freely between them. Rasmus Nielsen is certainly one of these researchers, and his work so far has merged many population genetic and phylogenetic aspects of biological research under the umbrella of molecular evolution. Although Nielsen did not contribute a chapter to his book, his work permeates all its chapters. This book gives an overview of his interests and current achievements in molecular evolution. In short, this book should be on your bookshelf." Peter Beerli for Evolution, 60(2), 2006
Download or read book Computational Genome Analysis written by Richard C. Deonier and published by Springer Science & Business Media. This book was released on 2005-12-27 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.
Download or read book Genetic Data Analysis for Plant and Animal Breeding written by Fikret Isik and published by Springer. This book was released on 2017-09-09 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods or statistical packages covered here may not be available or they might be out of date in a few years. Ultimately the book is intended for professional breeders interested in utilizing these tools and approaches in their breeding programs. Lastly, we anticipate the usage of this volume for advanced level graduate courses in agricultural and breeding courses.
Download or read book Computational Methods for Genetics of Complex Traits written by and published by Academic Press. This book was released on 2010-11-10 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of genetics is rapidly evolving, and new medical breakthroughs are occurring as a result of advances in knowledge gained from genetics reasearch. This thematic volume of Advances in Genetics looks at Computational Methods for Genetics of Complex traits. - Explores the latest topics in neural circuits and behavior research in zebrafish, drosophila, C.elegans, and mouse models - Includes methods for testing with ethical, legal, and social implications - Critically analyzes future prospects
Download or read book Genomic Signal Processing and Statistics written by Edward R. Dougherty and published by Hindawi Publishing Corporation. This book was released on 2005 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in genomic studies have stimulated synergetic research and development in many cross-disciplinary areas. Processing the vast genomic data, especially the recent large-scale microarray gene expression data, to reveal the complex biological functionality, represents enormous challenges to signal processing and statistics. This perspective naturally leads to a new field, genomic signal processing (GSP), which studies the processing of genomic signals by integrating the theory of signal processing and statistics. Written by an international, interdisciplinary team of authors, this invaluable edited volume is accessible to students just entering this emergent field, and to researchers, both in academia and in industry, in the fields of molecular biology, engineering, statistics, and signal processing. The book provides tutorial-level overviews and addresses the specific needs of genomic signal processing students and researchers as a reference book. The book aims to address current genomic challenges by exploiting potential synergies between genomics, signal processing, and statistics, with special emphasis on signal processing and statistical tools for structural and functional understanding of genomic data. The first part of this book provides a brief history of genomic research and a background introduction from both biological and signal-processing/statistical perspectives, so that readers can easily follow the material presented in the rest of the book. In what follows, overviews of state-of-the-art techniques are provided. We start with a chapter on sequence analysis, and follow with chapters on feature selection, classification, and clustering of microarray data. We then discuss the modeling, analysis, and simulation of biological regulatory networks, especially gene regulatory networks based on Boolean and Bayesian approaches. Visualization and compression of gene data, and supercomputer implementation of genomic signal processing systems are also treated. Finally, we discuss systems biology and medical applications of genomic research as well as the future trends in genomic signal processing and statistics research.