EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Statistical and Neural Classifiers

Download or read book Statistical and Neural Classifiers written by Sarunas Raudys and published by Springer Science & Business Media. This book was released on 2001-01-29 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classification of patterns is an important area of research which is central to all pattern recognition fields, including speech, image, robotics, and data analysis. Neural networks have been used successfully in a number of these fields, but so far their application has been based on a 'black box approach' with no real understanding of how they work. In this book, Sarunas Raudys - an internationally respected researcher in the area - provides an excellent mathematical and applied introduction to how neural network classifiers work and how they should be used.. .

Book Statistical and Neural Classifiers

Download or read book Statistical and Neural Classifiers written by Sarunas Raudys and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classification of patterns is an important area of research which is central to all pattern recognition fields, including speech, image, robotics, and data analysis. Neural networks have been used successfully in a number of these fields, but so far their application has been based on a 'black box approach' with no real understanding of how they work. In this book, Sarunas Raudys - an internationally respected researcher in the area - provides an excellent mathematical and applied introduction to how neural network classifiers work and how they should be used.. .

Book Computer Systems that Learn

Download or read book Computer Systems that Learn written by Sholom M. Weiss and published by Morgan Kaufmann Publishers. This book was released on 1991 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a practical guide to classification learning systems and their applications, which learn from sample data and make predictions for new cases. The authors examine prominent methods from each area, using an engineering approach and taking the practitioner's point of view.

Book Machine Learning  Neural and Statistical Classification

Download or read book Machine Learning Neural and Statistical Classification written by Donald Michie and published by Prentice Hall. This book was released on 1994 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Data Driven Computational Neuroscience

Download or read book Data Driven Computational Neuroscience written by Concha Bielza and published by Cambridge University Press. This book was released on 2020-11-26 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trains researchers and graduate students in state-of-the-art statistical and machine learning methods to build models with real-world data.

Book Pattern Recognition and Neural Networks

Download or read book Pattern Recognition and Neural Networks written by Brian D. Ripley and published by Cambridge University Press. This book was released on 2007 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.

Book Handbook Of Pattern Recognition And Computer Vision  2nd Edition

Download or read book Handbook Of Pattern Recognition And Computer Vision 2nd Edition written by Chi Hau Chen and published by World Scientific. This book was released on 1999-03-12 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Book Neurocomputing

    Book Details:
  • Author : Francoise Fogelman Soulie
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642761534
  • Pages : 454 pages

Download or read book Neurocomputing written by Francoise Fogelman Soulie and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the collected papers of the NATO Conference on Neurocomputing, held in Les Arcs in February 1989. For many of us, this conference was reminiscent of another NATO Conference, in 1985, on Disordered Systems [1], which was the first conference on neural nets to be held in France. To some of the participants that conference opened, in a way, the field of neurocomputing (somewhat exotic at that time!) and also allowed for many future fruitful contacts. Since then, the field of neurocomputing has very much evolved and its audience has increased so widely that meetings in the US have often gathered more than 2000 participants. However, the NATO workshops have a distinct atmosphere of free discussions and time for exchange, and so, in 1988, we decided to go for another session. This was an ~casion for me and some of the early birds of the 1985 conference to realize how much, and how little too, the field had matured.

Book Statistical Pattern Recognition

Download or read book Statistical Pattern Recognition written by Andrew R. Webb and published by John Wiley & Sons. This book was released on 2003-07-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a

Book Statistical Machine Learning for Human Behaviour Analysis

Download or read book Statistical Machine Learning for Human Behaviour Analysis written by Thomas Moeslund and published by MDPI. This book was released on 2020-06-17 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue focused on novel vision-based approaches, mainly related to computer vision and machine learning, for the automatic analysis of human behaviour. We solicited submissions on the following topics: information theory-based pattern classification, biometric recognition, multimodal human analysis, low resolution human activity analysis, face analysis, abnormal behaviour analysis, unsupervised human analysis scenarios, 3D/4D human pose and shape estimation, human analysis in virtual/augmented reality, affective computing, social signal processing, personality computing, activity recognition, human tracking in the wild, and application of information-theoretic concepts for human behaviour analysis. In the end, 15 papers were accepted for this special issue. These papers, that are reviewed in this editorial, analyse human behaviour from the aforementioned perspectives, defining in most of the cases the state of the art in their corresponding field.

Book Learning from Data

    Book Details:
  • Author : Vladimir Cherkassky
  • Publisher : John Wiley & Sons
  • Release : 2007-09-10
  • ISBN : 9780470140512
  • Pages : 560 pages

Download or read book Learning from Data written by Vladimir Cherkassky and published by John Wiley & Sons. This book was released on 2007-09-10 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: An interdisciplinary framework for learning methodologies—covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied—showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.

Book Combining Artificial Neural Nets

Download or read book Combining Artificial Neural Nets written by Amanda J.C. Sharkey and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, written by leading researchers, presents methods of combining neural nets to improve their performance. The techniques include ensemble-based approaches, where a variety of methods are used to create a set of different nets trained on the same task, and modular approaches, where a task is decomposed into simpler problems. The techniques are also accompanied by an evaluation of their relative effectiveness and their application to a variety of problems.

Book Pattern Recognition and Machine Learning

Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Book Modern Analysis of Customer Surveys

Download or read book Modern Analysis of Customer Surveys written by Ron S. Kenett and published by John Wiley & Sons. This book was released on 2012-01-30 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Customer survey studies deals with customers, consumers and user satisfaction from a product or service. In practice, many of the customer surveys conducted by business and industry are analyzed in a very simple way, without using models or statistical methods. Typical reports include descriptive statistics and basic graphical displays. As demonstrated in this book, integrating such basic analysis with more advanced tools, provides insights on non-obvious patterns and important relationships between the survey variables. This knowledge can significantly affect the conclusions derived from a survey. Key features: Provides an integrated, case-studies based approach to analysing customer survey data. Presents a general introduction to customer surveys, within an organization’s business cycle. Contains classical techniques with modern and non standard tools. Focuses on probabilistic techniques from the area of statistics/data analysis and covers all major recent developments. Accompanied by a supporting website containing datasets and R scripts. Customer survey specialists, quality managers and market researchers will benefit from this book as well as specialists in marketing, data mining and business intelligence fields.

Book Statistical and Neural Classifiers

Download or read book Statistical and Neural Classifiers written by Sarunas Raudys and published by . This book was released on 2014-01-15 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Neural Networks and Statistical Learning

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Science & Business Media. This book was released on 2013-12-09 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

Book Neural Networks for Pattern Recognition

Download or read book Neural Networks for Pattern Recognition written by Christopher M. Bishop and published by Oxford University Press. This book was released on 1995-11-23 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.