Download or read book CUDA Fortran for Scientists and Engineers written by Gregory Ruetsch and published by Elsevier. This book was released on 2013-09-11 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: CUDA Fortran for Scientists and Engineers shows how high-performance application developers can leverage the power of GPUs using Fortran, the familiar language of scientific computing and supercomputer performance benchmarking. The authors presume no prior parallel computing experience, and cover the basics along with best practices for efficient GPU computing using CUDA Fortran. To help you add CUDA Fortran to existing Fortran codes, the book explains how to understand the target GPU architecture, identify computationally intensive parts of the code, and modify the code to manage the data and parallelism and optimize performance. All of this is done in Fortran, without having to rewrite in another language. Each concept is illustrated with actual examples so you can immediately evaluate the performance of your code in comparison. Leverage the power of GPU computing with PGI’s CUDA Fortran compiler Gain insights from members of the CUDA Fortran language development team Includes multi-GPU programming in CUDA Fortran, covering both peer-to-peer and message passing interface (MPI) approaches Includes full source code for all the examples and several case studies Download source code and slides from the book's companion website
Download or read book Statistical Treatment of Turbulent Polydisperse Particle Systems written by J.S. Shrimpton and published by Springer. This book was released on 2014-06-20 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we will introduce the modeling process of turbulent particulate flows which are encountered in many engineering and environmental applications. These types of flows usually also involve heat and mass transfer and turbulence adds another dimension to the complexity of the problem and hence a rigorous mathematical treatment is usually required. This required mathematical background makes the learning curve for new research students and practicing engineers extremely steep. Therefore modeling process for new or existing problems is extremely slow and is usually restricted to minor improvements to the to the available models. In this book we try to gather the required mathematical knowledge and introduce them more intuitively. Many numerical simulations of basic processes and equation will be given to provide the reader with a physical understanding of the different terms in the underlying equations. We will start the modeling process from a mesoscopic level which deals with the system of an intermediate length scale between the size of the atoms or molecules and the bulk of the material. This provides a unique opportunity for the reader to intuitively add different phenomena to their models and equipped with the necessary mathematical tools derive the final models for their problems.
Download or read book Behaviour of Energetic Coherent Structures in Turbulent Pipe Flow at High Reynolds Numbers written by Zeinab Hallol and published by Cuvillier Verlag. This book was released on 2021-10-26 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, coherent turbulent structures in turbulent pipe flow are investigated at relatively high Reynolds numbers and study their association in both total kinetic energy and Reynolds shear stress. Experimental investigations have been performed in Cottbus Large Pipe test facility (CoLaPipe) for pipe flow over a wide range of Reynolds number 8 × 104 ≤ ReD ≤ 1 × 106, located at the Aerodynamics and Fluid Mechanics Department, Brandenburg University of Technology Cottbus- Senftenberg (BTU). The first part of the thesis focuses on determining the contribution of the coherent structures using one-dimensional spectral analysis and assessing the structures behaviour in the outer region of pipe flow using high spatial resolution Hot-wire measurement up to 30kHz. The results of the power and pre-multiplied spectrum of stream-wise velocity indicate that the wavelength value of very large scale motions (VLSMs) acquires 19R at a maximum Reynolds number range ReD=1 × 106 (Reτ =19000). On the other hand, large-scale motions have a wavelength value of 3R over different Reynolds number range. Regarding the identified wavelength values, it is observed that contribution to energy for structures greater than 3R carries 55% of total kinetic energy. In addition, temporal-spatial resolution using the High-speed PIV measurements has been performed in CoLaPipe to estimate the contribution magnitude of stream-wise/wall-normal velocity fluctuations to total kinetic energy and Reynolds shear stress in the logarithmic and outer layer.
Download or read book Navier Stokes Turbulence written by Wolfgang Kollmann and published by Springer Nature. This book was released on 2019-11-21 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as a core text for graduate courses in advanced fluid mechanics and applied science. It consists of two parts. The first provides an introduction and general theory of fully developed turbulence, where treatment of turbulence is based on the linear functional equation derived by E. Hopf governing the characteristic functional that determines the statistical properties of a turbulent flow. In this section, Professor Kollmann explains how the theory is built on divergence free Schauder bases for the phase space of the turbulent flow and the space of argument vector fields for the characteristic functional. Subsequent chapters are devoted to mapping methods, homogeneous turbulence based upon the hypotheses of Kolmogorov and Onsager, intermittency, structural features of turbulent shear flows and their recognition.
Download or read book Turbulent Fluid Flow written by Peter S. Bernard and published by John Wiley & Sons. This book was released on 2019-03-11 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the essential information needed to model and compute turbulent flows and interpret experiments and numerical simulations Turbulent Fluid Flow offers an authoritative resource to the theories and models encountered in the field of turbulent flow. In this book, the author – a noted expert on the subject – creates a complete picture of the essential information needed for engineers and scientists to carry out turbulent flow studies. This important guide puts the focus on the essential aspects of the subject – including modeling, simulation and the interpretation of experimental data - that fit into the basic needs of engineers that work with turbulent flows in technological design and innovation. Turbulent Fluid Flow offers the basic information that underpins the most recent models and techniques that are currently used to solve turbulent flow challenges. The book provides careful explanations, many supporting figures and detailed mathematical calculations that enable the reader to derive a clear understanding of turbulent fluid flow. This vital resource: Offers a clear explanation to the models and techniques currently used to solve turbulent flow problems Provides an up-to-date account of recent experimental and numerical studies probing the physics of canonical turbulent flows Gives a self-contained treatment of the essential topics in the field of turbulence Puts the focus on the connection between the subject matter and the goals of fluids engineering Comes with a detailed syllabus and a solutions manual containing MATLAB codes, available on a password-protected companion website Written for fluids engineers, physicists, applied mathematicians and graduate students in mechanical, aerospace and civil engineering, Turbulent Fluid Flow contains an authoritative resource to the information needed to interpret experiments and carry out turbulent flow studies.
Download or read book Turbulence In Coastal And Civil Engineering written by B Mutlu Sumer and published by World Scientific. This book was released on 2020-03-23 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the subject of turbulence encountered in coastal and civil engineering.The primary aim of the book is to describe turbulence processes including transition to turbulence; mean and fluctuating flows in channels/pipes, and in currents; wave boundary layers (including boundary layers under solitary waves); streaming processes in wave boundary layers; turbulence processes in breaking waves including breaking solitary waves; turbulence processes such as bursting process and their implications for sediment transport; flow resistance in steady and wave boundary layers; and turbulent diffusion and dispersion processes in the coastal and river environment, including sediment transport due to diffusion/dispersion.Both phenomenological and statistical theories are described in great detail. Turbulence modelling is also described, and several examples for modelling of turbulence in steady flow and wave boundary layers are presented.The book ends with a chapter containing hands-on exercises on a wide variety of turbulent flows including experimental study of turbulence in an open-channel flow, using Laser Doppler Anemometry; Statistical, correlation and spectral analysis of turbulent air jet flow; Turbulence modelling of wave boundary layer flows; and numerical modelling of dispersion in a turbulent boundary layer, a set of exercises used by the authors in their Masters classes over many years.Although the book is essentially intended for professionals and researchers in the area of Coastal and Civil Engineering, and as a text book for graduate/post graduate students, the contents of the book will, however, additionally provide sufficient background in the study of turbulent flows relevant to many other disciplines, such as Wind Engineering, Mechanical Engineering, and Environmental Engineering.
Download or read book Fluid Flow Phenomena written by Paolo Orlandi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the simulation of the incompressible Navier-Stokes equations for laminar and turbulent flows. The book is limited to explaining and employing the finite difference method. It furnishes a large number of source codes which permit to play with the Navier-Stokes equations and to understand the complex physics related to fluid mechanics. Numerical simulations are useful tools to understand the complexity of the flows, which often is difficult to derive from laboratory experiments. This book, then, can be very useful to scholars doing laboratory experiments, since they often do not have extra time to study the large variety of numerical methods; furthermore they cannot spend more time in transferring one of the methods into a computer language. By means of numerical simulations, for example, insights into the vorticity field can be obtained which are difficult to obtain by measurements. This book can be used by graduate as well as undergraduate students while reading books on theoretical fluid mechanics; it teaches how to simulate the dynamics of flow fields on personal computers. This will provide a better way of understanding the theory. Two chapters on Large Eddy Simulations have been included, since this is a methodology that in the near future will allow more universal turbulence models for practical applications. The direct simulation of the Navier-Stokes equations (DNS) is simple by finite-differences, that are satisfactory to reproduce the dynamics of turbulent flows. A large part of the book is devoted to the study of homogeneous and wall turbulent flows. In the second chapter the elementary concept of finite difference is given to solve parabolic and elliptical partial differential equations. In successive chapters the 1D, 2D, and 3D Navier-Stokes equations are solved in Cartesian and cylindrical coordinates. Finally, Large Eddy Simulations are performed to check the importance of the subgrid scale models. Results for turbulent and laminar flows are discussed, with particular emphasis on vortex dynamics. This volume will be of interest to graduate students and researchers wanting to compare experiments and numerical simulations, and to workers in the mechanical and aeronautic industries.
Download or read book A First Course in Turbulence written by Henk Tennekes and published by MIT Press. This book was released on 2018-04-27 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of rivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and spectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.
Download or read book Analysis of Turbulent Flows with Computer Programs written by Tuncer Cebeci and published by Elsevier. This book was released on 2004-04-20 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling and Computation of Turbulent Flows has been written by one of the most prolific authors in the field of CFD. Professor of aerodynamics at SUPAERO and director of DMAE at ONERA, the author calls on both his academic and industrial experience when presenting this work. The field of CFD is strongly represented by the following corporate companies; Boeing; Airbus; Thales; United Technologies and General Electric, government bodies and academic institutions also have a strong interest in this exciting field. Each chapter has also been specifically constructed to constitute as an advanced textbook for PhD candidates working in the field of CFD, making this book essential reading for researchers, practitioners in industry and MSc and MEng students.* A broad overview of the development and application of Computational Fluid Dynamics (CFD), with real applications to industry* A Free CD-Rom which contains computer program's suitable for solving non-linear equations which arise in modeling turbulent flows* Professor Cebeci has published over 200 technical papers and 14 books, a world authority in the field of CFD
Download or read book The Structure of Turbulent Shear Flow written by A. A. R. Townsend and published by Cambridge University Press. This book was released on 1976 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.
Download or read book Direct Numerical Simulation of Very Large Scale Motions in Turbulent Pipe Flow written by Christian Bauer and published by Cuvillier Verlag. This book was released on 2021-02-01 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die turbulente Rohrströmung ist nicht nur von großer Bedeutung für Anwendungen im Ingenieurbereich, sondern auch für die Grundlagenforschung von wandnaher Turbulenz. In der vorliegenden Arbeit wird die Interaktion sogenannter turbulenter Superstrukturen (engl.: very-large-scale motions, VLSMs) mit der kleinskaligen Wandturbulenz auf Basis der Methode der direkten numerischen Simulation untersucht. Dabei werden Schubspannungs-Reynoldszahlen bis Reτ = 2880 und Rohrlängen bis L = 42R berücksichtigt. Es wird das Konvergenz- und Skalierungsverhalten verschiedener statistischer Momente der Geschwindigkeitsverteilung untersucht und in Bezug auf VLSMs diskutiert. Die folgende Analyse der axialen Energietransportgleichung des gefilterten Geschwindigkeitsfeldes legt offen, dass VLSMs Energie von der mittleren Strömung zugeführt bekommen, ähnlich den kleinskaligen Strukturen durch den turbulenten Produktionsmechanismus. Die verschiedenen Terme der Energiebilanz werden sowohl anhand von mittleren Profilen, als auch instantanen Strömungsvisualisierungen und drei-dimensionalen Korrelationen diskutiert, wobei auch auf das Phänomen der inversen turbulenten Energiekaskade eingegangen wird. Die Forschungsarbeit gewährt dabei neue Einblicke in die Interaktion der VLSMs mit dem turbulenten Wandzyklus und trägt zum besseren Verständnis der turbulenten Rohrströmung bei. Turbulent pipe flow is not only of importance to engineering applications but also of fundamental interest to the study of wall-bounded turbulence. In the present work, the interaction of the so-called very-large-scale motions (VLSMs) with the near-wall, small-scale turbulence is explored by means of direct numerical simulation for friction Reynolds numbers up to Reτ = 2880 and pipe lengths up to L = 42R. Besides, the convergence and the scaling of different order moments of the velocity distribution are studied and also discussed with regard to VLSMs. The subsequent analysis of the streamwise energy budget equation of the filtered velocity field reveals that VLSMs obtain their energy from the mean velocity field via a production mechanism similar to the one known from the near-wall cycle. Moreover, the different energy budget terms are investigated by means of statistical averages, instantaneous flow field visualisations, and three-dimensional correlations, wherein the backscattering phenomenon is also dealt with. In brief, the research sheds new light on our understanding of the interaction between VLSMs and the near-wall cycle and leads to a better grasp of turbulent pipe flow in general.
Download or read book Theories of Turbulence written by Martin Oberlack and published by Springer. This book was released on 2014-05-04 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.
Download or read book Fluid Mechanics of Flow Metering written by Wolfgang Merzkirch and published by Springer Science & Business Media. This book was released on 2005 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flow meters measure the volumetric flow rate in a pipeline. Most meters are based on deriving a signal from the fluid flow and calibrating the signal against the volumetric flow rate. The calibration is done in fully-developed flow, and the same state of flow must exist at the meter’s position when it is in practical use. Because the field of flow metering has been neglected by fluid mechanicists for a long time, this book addresses two major fluid mechanical problems in flow metering: the analysis of signal generation in turbulent pipe flow, which explains the function of the meter beyond a simple calibration, and the possible use of a meter in non-developed flows. These problems are investigated with reference to, and examples from, a variety of meters, e.g. ultrasound cross-correlation meters, vortex meters, and turbine meters. Studying these problems requires consideration of specific phenomena in turbulent non-developed pipe flow, as caused by installations, and finding special solutions with signal processing, both of which are included in the book.
Download or read book Intermittency and Self Organisation in Turbulence and Statistical Mechanics written by Eun-jin Kim and published by MDPI. This book was released on 2019-07-29 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue Intermittency and Self-Organisation in Turbulence and Statistical Mechanics that was published in Entropy
Download or read book Turbulent Flows written by Stephen B. Pope and published by Cambridge University Press. This book was released on 2000-08-10 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text on turbulent flows, an important topic in fluid dynamics. It is up-to-date, comprehensive, designed for teaching, and is based on a course taught by the author at Cornell University for a number of years. The book consists of two parts followed by a number of appendices. Part I provides a general introduction to turbulent flows, how they behave, how they can be described quantitatively, and the fundamental physical processes involved. Part II is concerned with different approaches for modelling or simulating turbulent flows. The necessary mathematical techniques are presented in the appendices. This book is primarily intended as a graduate level text in turbulent flows for engineering students, but it may also be valuable to students in applied mathematics, physics, oceanography and atmospheric sciences, as well as researchers and practising engineers.
Download or read book Bubbly Flows written by Martin Sommerfeld and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.
Download or read book Boundary Layer and Flow Control written by Gustav Victor Lachmann and published by Pergamon. This book was released on 1961 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: