Download or read book Fundamentals of Thermophotovoltaic Energy Conversion written by Donald Chubb and published by Elsevier. This book was released on 2007-05-11 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Each chapter includes a summary and concludes with a set of problems.The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance the emitter efficiency is calculated. Chapter 4 discusses interference, plasma and resonant array filters plus an interference filter with an imbedded metallic layer, a combined interference-plasma filter and spectral control using a back surface reflector(BSR) on the PV array. The theory necessary to calculate the optical properties of these filters is presented. Chapter 5 presents the fundamentals of semiconductor PV cells. Using transport equations calculation of the current-voltage relation for a PV cell is carried out. Quantum efficiency, spectral response and the electrical equivalent circuit for a PV cell are introduced so that the PV cell efficiency and power output can be calculated.The final three chapters of the book consider the combination of the emitter, filter and PV array that make up the optical cavity of a TPV system. Chapter 6 applies radiation transfer theory to calculate the cavity efficiency of planar and cylindrical optical cavities. Also introduced in Chapter 6 are the overall TPV efficiency, thermal efficiency and PV efficiency. Leakage of radiation out of the optical cavity results in a significant loss in TPV efficiency. Chapter 7 considers that topic. The final chapter presents a model for a planar TPV system.Six appendices present background information necessary to carry out theoretical developments in the text. Two of the appendices include Mathematica programs for the spectral optical properties of multi-layer interference filters and a planar TPV system. Software is included for downloading all the programs within the book. - First text written on thermophotovoltaic(TPV) energy conversion - Includes all the necessary theory to calculate TPV system performance - Author has been doing TPV energy conversion research since 1980's - Emphasizes the fundamentals of TPV energy conversion - Includes a summary and problem set at the end of each chapter - Includes Mathematica programs for calculating optical properties of interference filters and planar TPV system performance solution software
Download or read book Thermophotovoltaics written by Thomas Bauer and published by Springer Science & Business Media. This book was released on 2011-06-17 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermophotovoltaics is the science and technology associated with the direct generation of electricity from high temperature heat. Potential applications include combined heat and power, portable and auxiliary power, radioisotope space power, industrial waste heat recovery and concentrated solar power. This book aims at serving as an introduction to the underlying theory, overview of present day components and system arrangements, and update of the latest developments in the field. The emphasis is placed on the understanding of the critical aspects of efficient thermophotovoltaic system design. The aim is to assist researchers in the field.
Download or read book Nanoscale Energy Transport written by LIAO and published by IOP Publishing Limited. This book was released on 2020-03-20 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together leading names in the field of nanoscale energy transport to provide a comprehensive and insightful review of this developing topic. The text covers new developments in the scientific basis and the practical relevance of nanoscale energy transport, highlighting the emerging effects at the nanoscale that qualitatively differ from those at the macroscopic scale. Throughout the book, microscopic energy carriers are discussed, including photons, electrons and magnons. State-of-the-art computational and experimental nanoscale energy transport methods are reviewed, and a broad range of materials system topics are considered, from interfaces and molecular junctions to nanostructured bulk materials. Nanoscale Energy Transport is a valuable reference for researchers in physics, materials, mechanical and electrical engineering, and it provides an excellent resource for graduate students.
Download or read book Ultra High Temperature Thermal Energy Storage Transfer and Conversion written by Alejandro Datas and published by Woodhead Publishing. This book was released on 2020-09-01 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion presents a comprehensive analysis of thermal energy storage systems operating at beyond 800°C. Editor Dr. Alejandro Datas and his team of expert contributors from a variety of regions summarize the main technological options and the most relevant materials and characterization considerations to enable the reader to make the most effective and efficient decisions.This book helps the reader to solve the very specific challenges associated with working within an ultra-high temperature energy storage setting. It condenses and summarizes the latest knowledge, covering fundamentals, device design, materials selection and applications, as well as thermodynamic cycles and solid-state devices for ultra-high temperature energy conversion.This book provides a comprehensive and multidisciplinary guide to engineers and researchers in a variety of fields including energy conversion, storage, cogeneration, thermodynamics, numerical methods, CSP, and materials engineering. It firstly provides a review of fundamental concepts before exploring numerical methods for fluid-dynamics and phase change materials, before presenting more complex elements such as heat transfer fluids, thermal insulation, thermodynamic cycles, and a variety of energy conversation methods including thermophotovoltaic, thermionic, and combined heat and power. - Reviews the main technologies enabling ultra-high temperature energy storage and conversion, including both thermodynamic cycles and solid-state devices - Includes the applications for ultra-high temperature energy storage systems, both in terrestrial and space environments - Analyzes the thermophysical properties and relevant experimental and theoretical methods for the analysis of high-temperature materials
Download or read book Functional Materials for Sustainable Energy Applications written by J A Kilner and published by Elsevier. This book was released on 2012-09-28 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production.Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials.With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. - An essential guide to the development and application of functional materials in sustainable energy production - Reviews functional materials for solar power - Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage
Download or read book Thermophotovoltaic Generation of Electricity written by Carlos Algora and published by American Institute of Physics. This book was released on 2007-03-09 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features peer-reviewed papers that were presented at the Seventh World Conference on Thermophotovoltaic Generation of Electricity. Thermophotovoltaic technology is a promising new means for the direct conversion of thermal to electric energy. Its potential applications range from military power, to space propulsion, to commercial products for market niches.
Download or read book Advanced Power Generation Systems written by Yatish T. Shah and published by CRC Press. This book was released on 2022-12-21 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Power Generation Systems: Thermal Sources evaluates advances made in heat-to-power technologies for conventional combustion heat and nuclear heat, along with natural sources of geothermal, solar, and waste heat generated from the use of different sources. These advances will render the landscape of power generation significantly different in just a few decades. This book covers the commercial viability of advanced technologies and identifies where more work needs to be done. Since power is the future of energy, these technologies will remain sustainable over a long period of time. Key Features Covers power generation and heat engines Details photovoltaics, thermo-photovoltaics, and thermoelectricity Includes discussion of nuclear and renewable energy as well as waste heat This book will be useful for advanced students, researchers, and professionals interested in power generation and energy industries.
Download or read book Thermal Plasmonics and Metamaterials for a Low Carbon Society written by Kotaro Kajikawa and published by CRC Press. This book was released on 2024-06-03 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this edited volume for researchers and students, experts in thermal plasmonics and metamaterials technologies introduce cutting-edge energy and resource conservation techniques and environmentally friendly solutions in areas including energy generation and harvesting and radiative cooling. Through this book, readers will gain an in-depth understanding of the metamaterials and thermal plasmonics technologies used for such devices and the real-world applications of these technologies. This book is divided into three broad sections to address different aspects of these devices. The first section presents research on materials that can control thermal radiation and optical absorption, phase transition materials, and optical design using AI; the second covers research on thermophovoltaic elements, energy harvesting, and radiative cooling; and the third introduces research on photothermal materials’ applications, such as solar steam generation, desalination, recyclable inks, and radiative textiles. Each chapter is authored by an expert whose research is focused on a specific related technology or application. Readers can apply the information in this book to address many common problems related to environment and energy conservation. This book is invaluable for researchers and graduate students working in the fields of nanophotonics, energy, and environmentally friendly solutions, whether they are working on advancing the underlying technologies or expanding the range of usable applications to solve common global problems related to energy use, cooling, and resource consumption.
Download or read book Heat Transfer written by Konstantin Volkov and published by BoD – Books on Demand. This book was released on 2018-06-27 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on new analytical, experimental, and computational developments in the field of research of heat and mass transfer phenomena. The generation, conversion, use, and exchange of thermal energy between physical systems are considered. Various mechanisms of heat transfer such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes are presented. Theory and fundamental research in heat and mass transfer, numerical simulations and algorithms, experimental techniques, and measurements as they applied to all kinds of applied and emerging problems are covered.
Download or read book Second NREL Conference on Thermophotovoltaics written by David S. Ginley and published by American Institute of Physics. This book was released on 2000-04-14 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Thermophotovoltaic (TPV) Energy Converters generate electricity by photovoltaic conversion of photons emitted from a radiant heat source. A wide range of fuels can drive the heat source, and the technology supports a diverse range of potential applications. The proceedings of the July 1995 conference, sponsored by the National Renewable Energy Laboratory (NREL) under contract to the US Dept. of Energy, include sessions on thermophotovoltaic systems design and performance; markets and applications; optical system development; TPV cells (two sessions--one devoted to InGaAs cells); and emitter design and testing. No index. Annotation c. by Book News, Inc., Portland, Or.
Download or read book Mid infrared Semiconductor Optoelectronics written by Anthony Krier and published by Springer. This book was released on 2007-05-22 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optoelectronic devices operating in the mid-infrared wavelength range offer applications in a variety of areas from environmental gas monitoring around oil rigs to the detection of narcotics. They could also be used for free-space optical communications, thermal imaging applications and the development of "homeland security" measures. Mid-infrared Semiconductor Optoelectronics is an overview of the current status and technological development in this rapidly emerging area; the basic physics, some of the problems facing the design engineer and a comparison of possible solutions are laid out; the different lasers used as sources for mid-infrared technology are considered; recent work in detectors is reviewed; the last part of the book is concerned with applications. With a world-wide authorship of experts working in many mid-infrared-related fields this book will be an invaluable reference for researchers and graduate students drawn from physics, electronic and electrical engineering and materials science.
Download or read book ECOS 2012 The 25th International Conference on Efficiency Cost Optimization and Simulation of Energy Conversion Systems and Processes Perugia June 26th June 29th 2012 written by Umberto Desideri and published by Firenze University Press. This book was released on 2012 with total page 3218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology.
Download or read book Development and Modelling of a Thermophotovoltaic System written by Giovanni Mattarolo and published by kassel university press GmbH. This book was released on 2007 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Photovoltaic Solar Energy Conversion written by Gottfried H. Bauer and published by Springer. This book was released on 2015-04-16 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.
Download or read book NASA Thesaurus written by and published by . This book was released on 1998 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Thermophotovoltaic Energy Conversion Development Program written by and published by . This book was released on 1998 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Near Field Radiative Heat Transfer across Nanometer Vacuum Gaps written by Soumyadipta Basu and published by William Andrew. This book was released on 2016-05-30 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Near-Field Radiative Heat Transfer across Nanometer Vacuum Gaps provides an in-depth description of fundamentals and application of near-field radiative heat transfer. When the vacuum gap between two media is on the order of nanometers, heat transfer can exceed that between blackbodies. This book investigates near-field heat transfer between different materials and geometries highlighting interplay between optics, material thermophysical properties and electromagnetism. The book also highlights the application of near-field thermal radiation in the field of power generation, imaging, and thermal systems as an analog of electronic devices. - Brings together research in near-field radiative heat transfer in a focused and comprehensive manner, allowing those new to the topic to gain a thorough understanding of the science and how it can be used - Offers focused coverage of heat transfer in near-field radiation, which other books do not - Outlines the interplay between optics, electromagnetics, basic thermodynamics, and thermophysical properties of materials during near-field heat transfer