Download or read book Sparse Representations and Compressive Sensing for Imaging and Vision written by Vishal M. Patel and published by Springer Science & Business Media. This book was released on 2013-02-11 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressed sensing or compressive sensing is a new concept in signal processing where one measures a small number of non-adaptive linear combinations of the signal. These measurements are usually much smaller than the number of samples that define the signal. From these small numbers of measurements, the signal is then reconstructed by non-linear procedure. Compressed sensing has recently emerged as a powerful tool for efficiently processing data in non-traditional ways. In this book, we highlight some of the key mathematical insights underlying sparse representation and compressed sensing and illustrate the role of these theories in classical vision, imaging and biometrics problems.
Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Download or read book Sparse representation of visual data for compression and compressed sensing written by Ehsan Miandji and published by Linköping University Electronic Press. This book was released on 2018-11-23 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ongoing advances in computational photography have introduced a range of new imaging techniques for capturing multidimensional visual data such as light fields, BRDFs, BTFs, and more. A key challenge inherent to such imaging techniques is the large amount of high dimensional visual data that is produced, often requiring GBs, or even TBs, of storage. Moreover, the utilization of these datasets in real time applications poses many difficulties due to the large memory footprint. Furthermore, the acquisition of large-scale visual data is very challenging and expensive in most cases. This thesis makes several contributions with regards to acquisition, compression, and real time rendering of high dimensional visual data in computer graphics and imaging applications. Contributions of this thesis reside on the strong foundation of sparse representations. Numerous applications are presented that utilize sparse representations for compression and compressed sensing of visual data. Specifically, we present a single sensor light field camera design, a compressive rendering method, a real time precomputed photorealistic rendering technique, light field (video) compression and real time rendering, compressive BRDF capture, and more. Another key contribution of this thesis is a general framework for compression and compressed sensing of visual data, regardless of the dimensionality. As a result, any type of discrete visual data with arbitrary dimensionality can be captured, compressed, and rendered in real time. This thesis makes two theoretical contributions. In particular, uniqueness conditions for recovering a sparse signal under an ensemble of multidimensional dictionaries is presented. The theoretical results discussed here are useful for designing efficient capturing devices for multidimensional visual data. Moreover, we derive the probability of successful recovery of a noisy sparse signal using OMP, one of the most widely used algorithms for solving compressed sensing problems.
Download or read book A Mathematical Introduction to Compressive Sensing written by Simon Foucart and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Download or read book An Introduction to Compressed Sensing written by M. Vidyasagar and published by SIAM. This book was released on 2019-12-03 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressed sensing is a relatively recent area of research that refers to the recovery of high-dimensional but low-complexity objects from a limited number of measurements. The topic has applications to signal/image processing and computer algorithms, and it draws from a variety of mathematical techniques such as graph theory, probability theory, linear algebra, and optimization. The author presents significant concepts never before discussed as well as new advances in the theory, providing an in-depth initiation to the field of compressed sensing. An Introduction to Compressed Sensing contains substantial material on graph theory and the design of binary measurement matrices, which is missing in recent texts despite being poised to play a key role in the future of compressed sensing theory. It also covers several new developments in the field and is the only book to thoroughly study the problem of matrix recovery. The book supplies relevant results alongside their proofs in a compact and streamlined presentation that is easy to navigate. The core audience for this book is engineers, computer scientists, and statisticians who are interested in compressed sensing. Professionals working in image processing, speech processing, or seismic signal processing will also find the book of interest.
Download or read book Compressed Sensing written by Yonina C. Eldar and published by Cambridge University Press. This book was released on 2012-05-17 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing.
Download or read book Sparse and Redundant Representations written by Michael Elad and published by Springer Science & Business Media. This book was released on 2010-08-12 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.
Download or read book Handbook of Big Data Analytics written by Wolfgang Karl Härdle and published by Springer. This book was released on 2018-07-20 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.
Download or read book Compressive Sensing in Healthcare written by Mahdi Khosravy and published by Academic Press. This book was released on 2020-05-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressive Sensing in Healthcare, part of the Advances in Ubiquitous Sensing Applications for Healthcare series gives a review on compressive sensing techniques in a practical way, also presenting deterministic compressive sensing techniques that can be used in the field. The focus of the book is on healthcare applications for this technology. It is intended for both the creators of this technology and the end users of these products. The content includes the use of EEG and ECG, plus hardware and software requirements for building projects. Body area networks and body sensor networks are explored. - Provides a toolbox for compressive sensing in health, presenting both mathematical and coding information - Presents an intuitive introduction to compressive sensing, including MATLAB tutorials - Covers applications of compressive sensing in health care
Download or read book Compressed Sensing in Radar Signal Processing written by Antonio De Maio and published by Cambridge University Press. This book was released on 2019-10-17 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.
Download or read book A Wavelet Tour of Signal Processing written by Stephane Mallat and published by Elsevier. This book was released on 1999-09-14 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics
Download or read book Sparse Representations for Radar with MATLAB Examples written by Peter Knee and published by Morgan & Claypool Publishers. This book was released on 2012 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the field of sparse representations is relatively new, research activities in academic and industrial research labs are already producing encouraging results. The sparse signal or parameter model motivated several researchers and practitioners to explore high complexity/wide bandwidth applications such as Digital TV, MRI processing, and certain defense applications. The potential signal processing advancements in this area may influence radar technologies. This book presents the basic mathematical concepts along with a number of useful MATLAB(R) examples to emphasize the practical implementations both inside and outside the radar field.
Download or read book Sparse Modeling written by Irina Rish and published by CRC Press. This book was released on 2014-12-01 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing. Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the latest sparsity-related developments and will motivate you to continue learning about the field. The authors first present motivating examples and a high-level survey of key recent developments in sparse modeling. The book then describes optimization problems involving commonly used sparsity-enforcing tools, presents essential theoretical results, and discusses several state-of-the-art algorithms for finding sparse solutions. The authors go on to address a variety of sparse recovery problems that extend the basic formulation to more sophisticated forms of structured sparsity and to different loss functions. They also examine a particular class of sparse graphical models and cover dictionary learning and sparse matrix factorizations.
Download or read book Sparse Modeling for Image and Vision Processing written by Julien Mairal and published by Now Publishers. This book was released on 2014-12-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.
Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Nature. This book was released on 2019-09-12 with total page 996 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.
Download or read book Mixtures written by Kerrie L. Mengersen and published by John Wiley & Sons. This book was released on 2011-05-03 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.
Download or read book Computer Vision ECCV 2010 written by Kostas Daniilidis and published by Springer Science & Business Media. This book was released on 2010-08-30 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: The six-volume set comprising LNCS volumes 6311 until 6313 constitutes the refereed proceedings of the 11th European Conference on Computer Vision, ECCV 2010, held in Heraklion, Crete, Greece, in September 2010. The 325 revised papers presented were carefully reviewed and selected from 1174 submissions. The papers are organized in topical sections on object and scene recognition; segmentation and grouping; face, gesture, biometrics; motion and tracking; statistical models and visual learning; matching, registration, alignment; computational imaging; multi-view geometry; image features; video and event characterization; shape representation and recognition; stereo; reflectance, illumination, color; medical image analysis.