EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book SORBENT DEVELOPMENT FOR MERCURY CONTROL  Final Topical Report Including Semiannual for January 1  1998 Through June 30  1998

Download or read book SORBENT DEVELOPMENT FOR MERCURY CONTROL Final Topical Report Including Semiannual for January 1 1998 Through June 30 1998 written by and published by . This book was released on 1998 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The US Environmental Protection Agency (EPA) draft Mercury Study Report to Congress (1) estimated anthropogenic mercury emissions to be 253 tons/yr in the US, with the majority (216 tons/yr) from combustion sources. The three main combustion sources listed were coal (72 tons/yr), medical waste incinerators (65 tons/yr), and municipal waste combustors (64 tons/yr). The emissions from both medical waste incinerators and municipal waste combustors were recently regulated, which, together with the reduction of mercury in consumer products such as batteries and fluorescent lights, has already reduced the emissions from these sources, as stated in the final EPA Mercury Report to Congress (2). EPA now estimates total point-source mercury emissions to be 158 tons/yr, with coal remaining at 72 tons/yr, while medical waste incinerators are down to 16 tons/yr and municipal waste combustors are at 30 tons/yr. Coal is now the primary source of anthropogenic mercury emissions in the US, accounting for 46%. In addition, the use of coal in the US has been increasing every year and passed the 1-billion-ton-per-year mark for the first time in 1997 (3). At the current rate of increase, coal consumption would reach 1.4 billion tons annually by the year 2020. On a worldwide basis, the projected increase in coal usage over the next two decades in China, India, and Indonesia will dwarf the current US coal consumption level. Therefore, in the US coal will be the dominant source of mercury emissions and worldwide coal may be the cause of significantly increased mercury emissions unless an effective control strategy is implemented. However, much uncertainty remains over the most technically sound and cost-effective approach for reducing mercury emissions from coal-fired boilers, and a number of critical research needs will have to be met to develop better control (2).

Book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control  Quarterly Technical Report  April 1  June 30  1996

Download or read book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control Quarterly Technical Report April 1 June 30 1996 written by and published by . This book was released on 1996 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: The overall objective this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. During Phase 1, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed and will be integrated with an existing pilot-scale facility at PSCo's Comanche Station. Up to three candidate sorbents will then be injected into the flue gas stream upstream of the test device to determine the mercury removal efficiency for each sorbent. During the Phase 11 effort, component integration for the most promising dry sorbent technology (technically and economically feasible) shall be tested at the 5000 acfm pilot-scale. An extensive work plan has been developed for the project. Three sorbents will be selected for evaluation at the facility through investigation, presentation, and discussion among team members: PSCO, EPRI, ADA, and DOE. The selected sorbents will be tested in the five primary bench-scale configurations: pulse 'et baghouse, TOXECON, reverse-gas baghouse, electrostatic precipitator, and an ESP or fabric filter 'with no Comanche ash in the flue gas stream. In the EPRI TOXECON system, mercury sorbents will be injected downstream of a primary particulate control device, and collected in a pulse-jet baghouse operated at air-to-cloth ratios of 12 to 16 ft/min, thus separating the mercury and sorbent from the captured flyash. In the no-ash configuration, an external flyash sample will be injected into a clean gas stream to investigate possible variations in sorbent effectiveness in the presence of different ashes. The use of an existing test facility, a versatile design for the test fixture, and installation of a continuous mercury analyzer will allow for the completion of this ambitious test plan. The primary activity during the quarter was to complete fabrication and installation of the facility.

Book Development of a Sorbent based Technology for Control of Mercury in Flue Gas

Download or read book Development of a Sorbent based Technology for Control of Mercury in Flue Gas written by and published by . This book was released on 1996 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper presents results of research being, conducted at Argonne National Laboratory on the capture of elemental mercury in simulated flue gases by using dry sorbents. Experimental results from investigation of various sorbents and chemical additives for mercury control are reported. Of the sorbents investigated thus far, an activited-carbon-based sorbent impregnated with about 15% (by weight) of sulfur compound provided the best results. The key parameters affecting mercury control efficiency in a fixed-bed reactor, such as reactor loading, reactor temperature, sorbent size distribution, etc., were also studied, and the results ire presented. In addition to activated-carbon-based sorbents, a non-carbon-based sorbent that uses an inactive substrate treated with active chemicals is being developed. Preliminary, experimental results for mercury removal by this newly developed sorbent are presented.

Book ADVANCED SAMPLING AND ANALYSIS OF FINE PARTICULATES  Final Topical Report which Includes Semiannual for the Period of January 1  1998   June 30  1998

Download or read book ADVANCED SAMPLING AND ANALYSIS OF FINE PARTICULATES Final Topical Report which Includes Semiannual for the Period of January 1 1998 June 30 1998 written by and published by . This book was released on 1998 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sampling tests indicated that the polycarbonate filters were marginally acceptable for in-stack fine-particle collection because of their 230 F melting point as well as requiring carbon coating to reduce charging effects. Vitreous carbon substrates, although not porous, have acceptable thermal stability as well as acceptable levels of charging. A porous silver membrane filter is also being considered for future testing. Pure reference samples of secondary aerosols have been successfully been collected on vitreous carbon substrates with good dispersion and found suitable for direct examination by scanning electron microscope (SEM) without prior coating or preparation. These samples will be used to develop optimum SEM measurement and quantification techniques related to the analysis of fine secondary aerosols.

Book Value Added Sorbent Development

Download or read book Value Added Sorbent Development written by and published by . This book was released on 2000 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt: On a worldwide basis, the projected increase in coal usage over the next two decades in China, India, and Indonesia will dwarf the current U.S. coal consumption of 1 billion tons/year. Therefore, in the United States, coal will be the dominant source of mercury emissions, and worldwide, coal may be the cause of significantly increased mercury emissions unless an effective control strategy is implemented. However, there is much uncertainty over the most technically sound and cost-effective approach for reducing mercury emissions from coal-fired boilers. Several approaches are suggested for mercury control from coal-fired boilers, including enhancing the ability of wet scrubbers to retain mercury. However, many coal-fired boilers are not equipped with wet scrubbers. On the other hand, since almost all coal-fired boilers are equipped with either an electrostatic precipitator (ESP) or a baghouse, sorbent injection upstream of either an ESP or baghouse appears attractive, because it has the potential to control both Hg° and Hg{sup 2+}, would appear to be easy to retrofit, and would be applicable to both industrial and utility boilers. Since mercury in the gas stream from coal combustion is present in only trace quantities, only very small amounts of sorbent may be necessary. If we assume a mercury concentration of 10 [mu]g/m3 and a sorbent-to-mercury mass ratio of 1000:1, the required sorbent loading is 10 mg/m3, which is only 0.1% to 0.2% of a typical dust loading of 5-10 g/m3 (2.2-4.4 grains/scf). This amount of additional sorbent material in the ash would appear to be negligible and would not be expected to have an impact on control device performance or ash utilization. Accomplishing effective mercury control with sorbent injection upstream of a particulate control device requires several critical steps: (1) Dispersion of the small sorbent particles and mixing with the flue gas must be adequate to ensure that all of the gas is effectively treated in the short residence time (typically a few seconds) between sorbent injection and particle collection. (2) Assuming the sorbent particles can be injected and dispersed adequately, a second critical step is the mass transfer by diffusion of the mercury from the bulk flue gas to the particle surface within the available residence time. The ideal case would be to achieve sufficient mass transfer in the duct and not depend on additional transfer within the collection device. (3) Once the mercury molecules reach the surface of a sorbent particle, they will not be trapped unless sorption can occur at a rate equal to the rate of mass transfer by diffusion to the particle surface. Analysis by Rostam-Abadi and others concluded that only a very small surface area would theoretically be required to trap the mercury. The implication is that reactive surface sites are much more important than the amount of surface area. (4) Assuming the sorbent has the capacity and reactivity to trap the mercury that reaches the sorbent particles, the final critical step is long-term stability of the sorbed mercury.

Book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control  Quarterly Report  November 1  1995  December 31  1995

Download or read book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control Quarterly Report November 1 1995 December 31 1995 written by and published by . This book was released on 1996 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: The overall objective to this two phase program is to investigate dry carbon-based sorbents for mercury control. During Phase I, a bench-scale field test device that can simulate an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse will be designed and integrated with an existing pilot-scale facility at Public Service Company of Colorado's (PSCo's) Comanche station. Various sorbents will then be injected to determine the mercury removal efficiency for each. During Phase II effort, component integration of the most promising technologies shall be tested at the 5000 acfm pilot-scale. The primary task currently underway is the facility design. The design is expected to be finished in January, 1996. The facility, regardless of the particulate control module configuration, will be fitted with supply line injection port, through which mercury sorbents and SO2 control sorbents can be added to the flue gas stream.

Book Development of New Sorbents to Remove Mercury and Selenium from Flue Gas  Final Report  September 1  1993  August 31  1994

Download or read book Development of New Sorbents to Remove Mercury and Selenium from Flue Gas Final Report September 1 1993 August 31 1994 written by and published by . This book was released on 1995 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mercury (Hg) and selenium (Se) are two of the volatile trace metals in coal, which are often not captured by conventional gas clean up devices of coal-fired boilers. An alternative is to use sorbents to capture the volatile components of trace metals after coal combustion. In this project sorbent screening tests were performed in which ten sorbents were selected to remove metallic mercury in N2. These sorbents included activated carbon, char prepared from Ohio No. 5 coal, molecular sieves, silica gel, aluminum oxide, hydrated lime, Wyoming bentonite, kaolin, and Amberite IR-120 (an ion-exchanger). The sorbents were selected based on published information and B & W's experience on mercury removal. The promising sorbent was then selected and modified for detailed studies of removal of mercury and selenium compounds. The sorbents were tested in a bench-scale adsorption facility. A known amount of each sorbent was loaded in the column as a packed bed. A carrier gas was bubbled through the mercury and selenium compounds. The vaporized species were carried by the gas and went through the sorbent beds. The amount of mercury and selenium compounds captured by the sorbents was determined by atomic absorption. Results are discussed.

Book Evaluation of Sorbent Injection for Mercury Control

Download or read book Evaluation of Sorbent Injection for Mercury Control written by Sharon Sjostrom and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at four plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and a site burning a blend of bituminous and subbituminous coals with a cold-side ESP. This is the fourth quarterly report for this project. Long-term testing was completed at Holcomb during this reporting period and baseline testing at Meramec was begun. Preliminary results from long-term testing at Holcomb are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

Book Evaluation of Sorbent Injection for Mercury Control

Download or read book Evaluation of Sorbent Injection for Mercury Control written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this reporting period. Preliminary results from parametric, baseline and long-term testing at Meramec are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

Book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control  Quarterly Technical Report  October 1  December 31  1996

Download or read book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control Quarterly Technical Report October 1 December 31 1996 written by and published by . This book was released on 1997 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: The U.S. Department of Energy (DOE) has issued Public Service Company of Colorado (PSCo) a cost sharing contract to evaluate carbon-based sorbents for mercury control on a 600 acfm laboratory scale particulate control module (PCM). The PCM can simulate an electrostatic precipitator, a pulse-jet fabric filter, and a reverse air fabric filter and uses actual flue gas from an operating coal-fired power plant. Up to 3 different dry carbon-based sorbents will be tested to determine the mercury removal capability in the different configurations. The project is currently in the fifth quarter of an eight quarter Phase I project. The PCM has been fabricated and mercury removal testing with the ESP configuration has been completed. Original plans included the use on an on-line meercury analyzer to collect the test data. However, due to very low baseline mercury concentration, on-line measurement did not provide accurate data. The project has continued using a modified MESA method grab sample technique to determine inlet and outlet mercury concentrations. A major concern during sorbent evaluations has been the natural ability of the flyash at the test site to remove mercury. This has made determination of sorbent only mercury removal difficult. Overall vapor-phase mercury removals of 15 to 70% have been obtained but this includes mercury removals in the range of 30% by the flyash. It is believed that a maximum of approximately 40% removal due to the sorbent only has been obtained. A number of test and sampling modifications are in progress to increase the data confidence and many questions remain. Startup of the pulse jet configuration began in early November but results of this testing are not available at this time. The project team has decided to proceed with pulse jet testing using flue gas that does not contain significant flyash quantities to further investigate the sorbent only mercury removal.

Book Advanced Sorbent Development Program  Annual Report  November 1  1994  November 30  1995

Download or read book Advanced Sorbent Development Program Annual Report November 1 1994 November 30 1995 written by and published by . This book was released on 1995 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343--538 C. Two categories of reactor configurations are being considered: fixed-bed/moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents will be developed. As an optional task, a long-term bench-scale testing (100 cycles) of the best fixed-bed/moving-bed and fluidized-bed sorbents will be conducted. The sorbents will have chemical characteristics that permit cyclic regeneration over many cycles without a drastic loss of activity. They must also have physical characteristics that are compatible with the selected reactor, e.g., fixed vs fluidized bed, and which remain acceptable during absorption and regeneration. The sorbents must be capable of reducing the hydrogen sulfide level in the fuel gas to less than 20 ppmv in the specified temperature range and pressures in the range of 1 to 20 atmospheres. The proposed program is divided into several tasks: NEPA Report; Sorbent Preparation; Provision of Bench Unit; Bench Testing; Sorbent Cost Assessment; Topical Report; Market Plan; and Long-Term Testing. Progress on each of these is described.

Book Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas

Download or read book Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas written by Raja A. Jadhav and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Several different types of nanocrystalline metal oxide sorbents were synthesized and evaluated for capture of mercury (Hg) from coal-gasifier warm fuel gas. Detailed experimental studies were carried out to understand the fundamental mechanism of interaction between mercury and nanocrystalline sorbents over a range of fuel gas conditions. The metal oxide sorbents evaluated in this work included those prepared by GTI's subcontractor NanoScale Materials, Inc. (NanoScale) as well as those prepared in-house. These sorbents were evaluated for mercury capture in GTI's Mercury Sorbent Testing System. Initial experiments were focused on sorbent evaluation for mercury capture in N{sub 2} stream over the temperature range 423-533 K. These exploratory studies demonstrated that NanoActive Cr{sub 2}O{sub 3} along with its supported form was the most active of the sorbent evaluated. The capture of Hg decreased with temperature, which suggested that physical adsorption was the dominant mechanism of Hg capture. Desorption studies on spent sorbents indicated that a major portion of Hg was attached to the sorbent by strong bonds, which suggested that Hg was oxidized by the O atoms of the metal oxides, thus forming a strong Hg-O bond with the oxide. Initial screening studies also indicated that sulfided form of CuO/alumina was the most active for Hg capture, therefore was selected for detailed evaluation in simulated fuel gas (SFG). It was found that such supported CuO sorbents had high Hg-sorption capacity in the presence of H{sub 2}, provided the gas also contained H{sub 2}S. Exposure of supported CuO sorbent to H{sub 2}S results in the formation of CuS, which is an active sorbent for Hg capture. Sulfur atom in CuS forms a bond with Hg that results into its capture. Although thermodynamically CuS is predicted to form unreactive Cu{sub 2}S form when exposed to H{sub 2}, it is hypothesized that Cu atoms in such supported sorbents are in ''dispersed'' form, with two Cu atoms separated by a distance longer than required to form a Cu{sub 2}S molecule. Thus CuS remains in the stable reactive form as long as H{sub 2}S is present in the gas phase. It was also found that the captured Hg on such supported sorbents could be easily released when the spent sorbent is exposed to a H2-containing stream that is free of Hg and H{sub 2}S. Based on this mechanism, a novel regenerative process has been proposed to remove Hg from fuel gas at high temperature. Limited multicyclic studies carried out on the supported Cu sorbents showed their potential to capture Hg from SFG in a regenerative manner. This study has demonstrated that supported nanocrystalline Cu-based sorbents have potential to capture mercury from coal syngas over multiple absorption/regeneration cycles. Further studies are recommended to evaluate their potential to remove arsenic and selenium from coal fuel gas.

Book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control  Quarterly Technical Report  1996

Download or read book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control Quarterly Technical Report 1996 written by and published by . This book was released on 1996 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: The overall objective this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase 1, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed and will be integrated with an existing pilot-scale facility at PSCo's Comanche Station. Up to three candidate sorbents will then be injected into the flue gas stream upstream of the test device to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology (technically and economically feasible) shall be tested at the 5000 acfm pilot-scale. The primary activity during the quarter was the design and fabrication of the facility. The main structure, which incorporates the particulate control module (PCM), sorbent injection section and in-duct heater was functionally complete at the end of March. Finish work on the structure will take place in April and arrangements are being made to erect the facility at the host site, Comanche Station, on April 29 and 30, 1996. Final selection of sorbents has been postponed until late April when results from testing in EPRI laboratories should be available.

Book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control  Quarterly Technical Report  July 1  1996  September 31  1996

Download or read book Investigation and Demonstration of Dry Carbon based Sorbent Injection for Mercury Control Quarterly Technical Report July 1 1996 September 31 1996 written by and published by . This book was released on 1996 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo's Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

Book Investigation and Demonstration of Dry Carbon Based Sorbent Injection for Mercury Control

Download or read book Investigation and Demonstration of Dry Carbon Based Sorbent Injection for Mercury Control written by Terry Hunt and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device. The native fly ash of the host unit provided significant mercury removal capacity, so that the activated carbon sorbent served as an incremental mercury removal mechanism. Tests run to characterize the waste product, a combination of fly ash and activated carbon on which mercury was present, showed that mercury and other RCRA metals of interest were all below Toxic Characteristic Leaching Procedure (TCLP) regulatory limits in the leachate. The presence of activated carbon in the fly ash was shown to have an effect on the use of fly ash as an additive in the manufacture of concrete, which could limit the salability of fly ash from a plant where activated carbon was used for mercury control.

Book Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas

Download or read book Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas Technology Institute (GTI), in collaboration with Nanoscale Materials, Inc. (NanoScale), is developing and evaluating several nanocrystalline sorbents for capture of mercury from coal gasifier (such as IGCC) warm fuel gas. The focus of this study is on the understanding of fundamental mechanism of interaction between mercury and nanocrystalline sorbents over a range of fuel gas conditions. Detailed chemical and structural analysis of the sorbents will be carried out using an array of techniques, such as XPS, SEM, XRD, N2-adsorption, to understand the mechanism of interaction between the sorbent and mercury. The proposed nanoscale oxides have significantly higher reactivities as compared to their bulk counterparts, which is a result of high surface area, pore volume, and nanocrystalline structure. These metal oxides/sulfides will be evaluated for their mercury-sorption potential in an experimental setup equipped with state-of-the-art analyzers. Initial screening tests will be carried out in N2 atmosphere, and two selected sorbents will be evaluated in simulated fuel gas containing H2, H2S, Hg and other gases. The focus will be on development of sorbents suitable for higher temperature (420-640 K) applications. As part of this Task, several metal oxide (MeO)-based sorbents were evaluated for capture of mercury (Hg) in simulated fuel gas (SFG) atmosphere at temperatures in the range 423-533 K. Nanocrystalline sorbents prepared by NanoScale Materials, Inc. (NanoScale) as well as in-house (GTI) sorbents were evaluated. These supported sorbents were found to be effective in capturing Hg at 423 and 473 K. Based on the desorption studies, physical adsorption was found to be the dominant capture mechanism with lower temperatures favoring capture of Hg. A nanocrystalline sorbent formulation captured 100% of Hg at 423 K with a 4-hr Hg-sorption capacity of 2 mg/g (0.2 wt%) in SFG. The high capacity of the nanocrystalline sorbent is believed to be the result of its high surface area and small crystallite size.