EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Solid particles Deposition Through a Turbulent Impinging Jet Using Lattice Boltzmann Method

Download or read book Solid particles Deposition Through a Turbulent Impinging Jet Using Lattice Boltzmann Method written by Ali Abdulkadhim and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). An in-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This work proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 LBM lattice model, while the particles movement employs the D3Q27 one. The particle numbers are defined at the same regular LBM (fluid) nodes, and the transport of particles from one node to its neighbouring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous CA models distribute particles at each time step without considering the local particles number and velocity at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite increasing popularity of the LBM-MRT model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of simulations, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-MRT-CA algorithm. The LBM-MRT fluid (i.e. no particles) model results were compared with two benchmark test cases ones. The first case is a turbulent free square jet, and the second one is a circular turbulent impinging jet for L/D=2 at Reynolds number equals to 25,000, where L is the nozzle-to-surface distance and D is the jet diameter. The LBM-CA simulation methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The effect of changing Stokes number on the particle deposition profile was studied at different L/D ratios, i.e. L/D=2, 4, and 6. The current model was finally used to simulate the particle impaction pattern from a circular jet for L/D=0.5, where the effect of changing Stokes and Reynolds numbers on the particle transport and deposition was examined. The present LBM-CA solutions agree well with other results available in the open literature. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data for the impinging jet case of L/D=0.5 is generally good, and the present LBM-CA approach on GPU achieves a speedup ratio of about 150 against the serial code running on a single CPU. Another new model was proposed to incorporate the solid particle phase effect (i.e. two-way coupling) on the fluid flow. The LMB-Lagrangian approach was used in this model to track solid particles in the computational domain. The solid particle phase was considered as a porous medium moving in the computational domain. The impact of the porous medium (i.e. the solid particle phase) on the fluid flow characteristics (e.g. fluid velocity) is a function of the particle phase volume fraction and velocity in the LBM. Particle-particle collision (i.e. four-way coupling) was also considered in this model by utilizing the discrete element method (DEM). This approach can numerically capture the multi-particle collision behaviours in dense particle suspension problems. This model data were compared with the numerical study ones for a single bubble injected in a fluidized bed, and the results of the bubble diameters at different injection velocity were in good agreement.

Book Numerical Investigation of Particle Deposition in a Turbulent Boundary Layer with Forced Turbulence in the External Flow

Download or read book Numerical Investigation of Particle Deposition in a Turbulent Boundary Layer with Forced Turbulence in the External Flow written by Manoj Joishi and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deposition of particles on a wall plays a significant role in fluid-solid processes such as inclusions recovery from liquid steel in ladle furnace, that controls inclusion cleanliness upstream from solidification. The aim of this work is to study the turbulent deposition and capture of particles on a wall, in a situation where turbulence in the boundary layer originates both from wall shear and from agitation in the external flow. In a ladle furnace, such an agitation would result from bubble injection. A framework for simulations at mesoscopic scale in which particles are represented as points but the turbulence is fully resolved has been developped using an in-house solver, where a Lattice Boltzmann Method (LBM) solves flow dynamics and linear isotropic forcing generates artificial turbulence. Lagrangian Particle Tracking (LPT) is used to achieve one way coupling between particle motions and turbulent flow. These numerical methods were applied to Direct Numerical simulation (DNS) of a fully developed turbulent boundary layer in which particles smaller than the Kolmogorov length scale are introduced. The deposition mechanisms in aerosol conditions have been analyzed and quantified into a statistical law for deposition velocity in terms of Stokes number, and validated against data from the literature. Such simulations have provided a better understanding of deposition and capture mechanisms, depending on the turbulent flow in a wall boundary layer and on particle physical properties. Also, preliminary simulations in hydrosol conditions that match actual ladle operation have shown that the framework developed in this work can be applied to investigate inclusion behavior in secondary steel-making although statistical analysis in this work focused on aerosols.

Book Particles in Wall Bounded Turbulent Flows  Deposition  Re Suspension and Agglomeration

Download or read book Particles in Wall Bounded Turbulent Flows Deposition Re Suspension and Agglomeration written by Jean-Pierre Minier and published by Springer. This book was released on 2018-06-12 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.

Book Particles Transport Modeling by Lattice Boltzmann Method

Download or read book Particles Transport Modeling by Lattice Boltzmann Method written by Hamid Hasanzadeh Afrouzi and published by LAP Lambert Academic Publishing. This book was released on 2014-04-30 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and quantifying the behavior of particles such as deposition, aggregation and sedimentation is important in various sectors of science and technology. Some examples are the deposition of particles in channels and pipes, radioactive aerosol sampling and micro contamination control. Water purification, particles transport in human respiratory and dispersion of pollution, determination of indoor air quality are some others in biological and environmental systems.

Book Turbulent Mixing in a Free Air Jet Carrying Solid Particles

Download or read book Turbulent Mixing in a Free Air Jet Carrying Solid Particles written by Jayantilal Bhagvanji Rajani and published by . This book was released on 1972 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dispersion and Deposition of Heavy Particles in Turbulent Flows

Download or read book Dispersion and Deposition of Heavy Particles in Turbulent Flows written by Chunyu Jin and published by . This book was released on 2012 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particle Deposition and Aggregation

Download or read book Particle Deposition and Aggregation written by Menachem Elimelech and published by . This book was released on 1998 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deposition and aggregation of small solid particles are encountered in many natural and industrial environments. Whether it be deposition of particles onto a surface immersed in a liquid suspension or aggregateion of individual particles, these processes are of enotmous significance. They are vital to the manufacture of magnetic tape, purification of water using packed bed filters, selective capture of solids, cells and macromolecular species, and many other applications. This book presents a unified approach to the measurement, modelling and simulation of these processes, bringing together the disciplines of colliod and surface chemistry, hydrodynamics, and experimental and computational methods. It will be required reading for graduates working in process and environmental engineering, postgraduates involved in industrial R & D and for all scientists wishing to gain a more detailed and realistic understanding of process conditions in these areas.

Book Particle Advection Using the Lattice Boltzmann Method

Download or read book Particle Advection Using the Lattice Boltzmann Method written by Matthew Carroll and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice-Boltzmann Method (LBM) CFD analysis can be helpful in analysing fluid flow through porous media and complex geometries that may be difficult to simulate using traditional CFD methods. In this thesis, the technical details of lattice Botlzmann particle advection are presented. The lattice Botlzmann equations are explained as well as a method for introducing a particle in a fluid flow and advecting the particle using viscous, pressure, and gravitational forc-es. A method is developed to advect a particle through a computational lattice mesh using pressure forces, gravitational forces, as well as LBM-specific viscous force equations. The ca-pability of the particle advection code is demonstrated in the results. The developed LBM particle advection capability can be used to effectively model particulate filters.

Book The Canadian Journal of Chemical Engineering

Download or read book The Canadian Journal of Chemical Engineering written by and published by . This book was released on 2007-02 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microfluidics and Nanofluidics

    Book Details:
  • Author : Mohsen Sheikholeslami Kandelousi
  • Publisher : BoD – Books on Demand
  • Release : 2018-08-22
  • ISBN : 1789235405
  • Pages : 320 pages

Download or read book Microfluidics and Nanofluidics written by Mohsen Sheikholeslami Kandelousi and published by BoD – Books on Demand. This book was released on 2018-08-22 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present book, various applications of microfluidics and nanofluidics are introduced. Microfluidics and nanofluidics span a broad array of disciplines including mechanical, materials, and electrical engineering, surface science, chemistry, physics and biology. Also, this book deals with transport and interactions of colloidal particles and biomolecules in microchannels, which have great importance to many microfluidic applications, such as drug delivery in life science, microchannel heat exchangers in electronic cooling, and food processing industry. Furthermore, this book focuses on a detailed description of the thermal transport behavior, challenges and implications that involve the development and use of HTFs under the influence of atomistic-scale structures and industrial applications.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2710 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Fluid and Particle Dynamics in the Human Respiratory System

Download or read book Computational Fluid and Particle Dynamics in the Human Respiratory System written by Jiyuan Tu and published by Springer Science & Business Media. This book was released on 2012-09-18 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researchers are presented the latest biomedical research activities, and the computational visualizations will enhance their understanding of physiological functions of the respiratory system.

Book Heat Transfer in Gas Turbine Systems

Download or read book Heat Transfer in Gas Turbine Systems written by Richard J. Goldstein and published by . This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores recent developments in heat transfer and thermal control applied to modern high-temperature gas turbine systems. It examines experimental results and techniques computational studies and methods and design recommendations. Aspects of heat transfer in rotating machinery are studied as well as thermal aspects of other sections of the turbine (e.g. the compressor). Proceedings of an August 2000 conference.

Book Handbook of Atomization and Sprays

Download or read book Handbook of Atomization and Sprays written by Nasser Ashgriz and published by Springer Science & Business Media. This book was released on 2011-02-18 with total page 922 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomization and sprays are used in a wide range of industries: mechanical, chemical, aerospace, and civil engineering; material science and metallurgy; food; pharmaceutical, forestry, environmental protection; medicine; agriculture; meteorology and others. Some specific applications are spray combustion in furnaces, gas turbines and rockets, spray drying and cooling, air conditioning, powdered metallurgy, spray painting and coating, inhalation therapy, and many others. The Handbook of Atomization and Sprays will bring together the fundamental and applied material from all fields into one comprehensive source. Subject areas included in the reference are droplets, theoretical models and numerical simulations, phase Doppler particle analysis, applications, devices and more.

Book Slurry Flow

    Book Details:
  • Author : C A Shook
  • Publisher : Elsevier
  • Release : 2013-10-22
  • ISBN : 1483292207
  • Pages : 337 pages

Download or read book Slurry Flow written by C A Shook and published by Elsevier. This book was released on 2013-10-22 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Slurry Flow: Principles and Practice describes the basic concepts and methods for understanding and designing slurry flow systems, in-plan installations, and long-distance transportation systems. The goal of this book is to enable the design or plant engineer to derive the maximum benefit from a limited amount of test data and to generalize operating experience to new situations. Design procedures are described in detail and are accompanied by illustrative examples needed by engineers with little or no previous experience in slurry transport. The technical literature in this field is extensive: this book facilitates its use by surveying current research results and providing explanations of mechanistic flow models. This discussion of background scientific principles helps the practitioner to better interpret test data, select pumps, specify materials of construction, and choose measuring devises for slurry transport systems. The extensive range of topics covered in Slurry Flow: Principles and practice includes slurry rheology, homogeneous and heterogeneous slurry flow principles, wear mechanisms, pumping equipment, instrumentation, and operating aspects.