Download or read book X Ray Microscopy written by Chris Jacobsen and published by Cambridge University Press. This book was released on 2019-12-19 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete introduction to x-ray microscopy, covering optics, 3D and chemical imaging, lensless imaging, radiation damage, and applications.
Download or read book Soft X ray Optics written by Eberhard Spiller and published by SPIE Press. This book was released on 1994 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction. Some of these structures can now be fabricated to have diffraction-limited resolution. The new possibilities are described in a simple, tutorial way.
Download or read book Soft X Rays and Extreme Ultraviolet Radiation written by David Attwood and published by Cambridge University Press. This book was released on 2007-02-22 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detailed, comprehensive book describes the fundamental properties of soft X-rays and extreme ultraviolet (EUV) radiation and discusses their applications in a wide variety of fields, including EUV lithography for semiconductor chip manufacture and soft X-ray biomicroscopy. The author begins by presenting the relevant basic principles such as radiation and scattering, wave propagation, diffraction, and coherence. He then goes on to examine a broad range of phenomena and applications. The topics covered include spectromicroscopy, EUV astronomy, synchrotron radiation, and soft X-ray lasers. The author also provides a wealth of useful reference material such as electron binding energies, characteristic emission lines and photo-absorption cross-sections. The book will be of great interest to graduate students and researchers in engineering, physics, chemistry, and the life sciences. It will also appeal to practising engineers involved in semiconductor fabrication and materials science.
Download or read book X Ray Microscopy II written by David Sayre and published by Springer. This book was released on 2013-10-03 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on papers presented at the International Symposium on X-Ray Microscopy held at Brookhaven National Laboratory, Upton NY, August 31-September 4, 1987. Previous recent symposia on the sub ject were held in New York in 1979, Gottingen in 1983 and Taipei in 1986. Developments in x-ray microscopy continue at a rapid pace, with im portant advances in all major areas: x-ray sources, optics and components, and microscopes and imaging systems. Taken as a whole, the work pre sented here emphasizes three major directions: (a) improvements in the capability and image-quality of x-ray microscopy, expressed principally in systems attached to large, high-brightness x-ray sources; (b) greater access to x-ray microscopy, expressed chiefly in systems employing small, often pulsed, x-ray sources; and (c) increased rate of exploration of applications of x-ray microscopy. The number of papers presented at the symposium has roughly dou bled compared with that of its predecessors. While we are delighted at this growth as a manifestation of vitality and rapid growth of the field, we did have to ask the authors to limit the length of their papers and to submit them in camera-ready form. We thank the authors for their con tributions and for their efforts in adhering to the guidelines on manuscript preparation.
Download or read book Nanoscale Photonic Imaging written by Tim Salditt and published by Springer Nature. This book was released on 2020-06-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
Download or read book X Rays and Extreme Ultraviolet Radiation written by David Attwood and published by Cambridge University Press. This book was released on 2016 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the physics and understand the current applications of modern X-ray and EUV sources with this fully updated second edition.
Download or read book Optical Systems for Soft X Rays written by A.G. Michette and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fundamental problem in cell biology is the cause of aging. The solution to this problem has not yet been obtained because,(l) until recently, it was not possible to image living cells directly. The use of low-energy (soft) X rays has made such imaging possible, perhaps thereby allowing the aging process to be understood and possibly overcome (a result that may well generate further social, moral, and ethical problems). Fortun ately this is not the only aspect of cell biology amenable to soft X-ray imaging, and it is envisaged that many less controversial studies--such as investigations of the detailed differences between healthy and diseased or malignant cells (in their natural states) and processes of cell division and growth-will be made possible. The use of soft X rays is not limited to biological studies-many applications are possible in, for example, fusion research, materials science, and astronomy. Such studies have only recently begun in earnest because several difficulties had to be overcome, major among these being the lack (for some purposes) of sufficiently intense sources, and the technological difficulties associated with making efficient optical systems. As is well known, the advent of dedicated synchrotron radiation sources, in particular, has alleviated the first of these difficulties, not just for the soft X-ray region. It is the purpose of this book to consider progress in the second.
Download or read book x ray microscopy written by and published by CUP Archive. This book was released on 1987 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Physics of and Science with X Ray Free Electron Lasers written by J. Hastings and published by IOS Press. This book was released on 2020-12-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many X-Ray Free-Electron Lasers (X-FELs) have been designed, built and commissioned since the first lasing of the Linac Coherent Light Source in the hard and soft X-ray regions, and great progress has been made in improving their performance and extending their capabilities. Meanwhile, experimental techniques to exploit the unique properties of X-FELs to explore atomic and molecular systems of interest to physics, chemistry, biology and the material sciences have also been developed. As a result, our knowledge of atomic and molecular science has been greatly extended. Nevertheless, there is still much to be accomplished, and the potential for discovery with X-FELs is still largely unexplored. The next generation of scientists will need to be well versed in both particle beams/FEL physics and X-ray photon science. This book presents material from the Enrico Fermi summer school: Physics of and Science with X-Ray Free-Electron Lasers, held at the Enrico Fermi International School of Physics in Varenna, Italy, from 26 June - 1 July 2017. The lectures presented at the school were aimed at introducing graduate students and young scientists to this fast growing and exciting scientific area, and subjects covered include basic accelerator and FEL physics, as well as an introduction to the main research topics in X-FEL-based biology, atomic molecular optical science, material sciences, high-energy density physics and chemistry. Bridging the gap between accelerator/FEL physicists and scientists from other disciplines, the book will be of interest to all those working in the field.
Download or read book Medical Imaging Systems written by Andreas Maier and published by Springer. This book was released on 2018-08-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Download or read book X Ray Optics and Microanalysis 1992 Proceedings of the 13th INT Conference 31 August 4 September 1992 Manchester UK written by P.B. Kenway and published by CRC Press. This book was released on 1993-03-01 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first ICXOM congress held in Cambridge was the brain-child of Dr. Ellis Cosslett, founder of the Electron Optics Section of the Cavendish Laboratory. Dr. Cosslett pioneered research in x-ray optics and microanalysis and retained a close interest in all subject applications for this area of research, including physics, materials science, chemistry, and biology. X-Ray Optics and Microanalysis 1992 was held in his memory. At a special symposium, friends and colleagues reviewed the present status of research in x-ray optics and microanalysis. S.J. Pennycook of Oak Ridge National Laboratory, D.B. Williams of Lehigh University, J.A. Venables et al. of Arizona State University and Sussex University, and C. Jacobsen et al. of SUNY, Stony Brook are among the researchers whose papers are included in this volume.
Download or read book The Mathematics of Computerized Tomography written by Frank Natterer and published by SIAM. This book was released on 2001-06-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified view of tomographic techniques and an in-depth treatment of reconstruction algorithms.
Download or read book Synchrotron Light Sources and Free Electron Lasers written by Eberhard J. Jaeschke and published by Springer. This book was released on 2016-05-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.
Download or read book Handbook of X Ray Spectrometry written by Rene Van Grieken and published by CRC Press. This book was released on 2001-11-27 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Updates fundamentals and applications of all modes of x-ray spectrometry, including total reflection and polarized beam x-ray fluorescence analysis, and synchrotron radiation induced x-ray emission. Promotes the accurate measurement of samples while reducing the scattered background in the x-ray spectrum."
Download or read book Synchrotron Radiation in Materials Science written by Chunhai Fan and published by John Wiley & Sons. This book was released on 2018-05-29 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meeting the long-felt need for in-depth information on one of the most advanced material characterization methods, a top team of editors and authors from highly prestigious facilities and institutions covers a range of synchrotron techniques that have proven useful for materials research. Following an introduction to synchrotron radiation and its sources, the second part goes on to describe the various techniques that benefit from this especially bright light, including X-ray absorption, diffraction, scattering, imaging, and lithography. The thrid and final part provides an overview of the applications of synchrotron radiation in materials science. bridging the gap between specialists in synchrotron research and material scientists, this is a unique and indispensable resource for academic and industrial researchers alike.
Download or read book X Rays in Nanoscience written by Jinghua Guo and published by John Wiley & Sons. This book was released on 2011-09-22 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date overview of the different x-ray based methods in the hot fields of nanoscience and nanotechnology, including methods for imaging nanomaterials, as well as for probing the electronic structure of nanostructured materials in order to investigate their different properties. Written by authors at one of the world's top facilities working with these methods, this monograph presents and discusses techniques and applications in the fields of x-ray scattering, spectroscopy and microscope imaging. The resulting systematic collection of these advanced tools will benefit graduate students, postdocs as well as professional researchers.
Download or read book Handbook of Sample Preparation for Scanning Electron Microscopy and X Ray Microanalysis written by Patrick Echlin and published by Springer Science & Business Media. This book was released on 2011-04-14 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.