Download or read book Social Big Data Mining written by Hiroshi Ishikawa and published by CRC Press. This book was released on 2015-03-25 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the basic concepts and the related technologies of data mining for social medial. Topics include: big data and social data, data mining for making a hypothesis, multivariate analysis for verifying the hypothesis, web mining and media mining, natural language processing, social big data applications, and scalability. It explains
Download or read book Social Big Data Analytics written by Bilal Abu-Salih and published by Springer Nature. This book was released on 2021-03-10 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on data and how modern business firms use social data, specifically Online Social Networks (OSNs) incorporated as part of the infrastructure for a number of emerging applications such as personalized recommendation systems, opinion analysis, expertise retrieval, and computational advertising. This book identifies how in such applications, social data offers a plethora of benefits to enhance the decision making process. This book highlights that business intelligence applications are more focused on structured data; however, in order to understand and analyse the social big data, there is a need to aggregate data from various sources and to present it in a plausible format. Big Social Data (BSD) exhibit all the typical properties of big data: wide physical distribution, diversity of formats, non-standard data models, independently-managed and heterogeneous semantics but even further valuable with marketing opportunities. The book provides a review of the current state-of-the-art approaches for big social data analytics as well as to present dissimilar methods to infer value from social data. The book further examines several areas of research that benefits from the propagation of the social data. In particular, the book presents various technical approaches that produce data analytics capable of handling big data features and effective in filtering out unsolicited data and inferring a value. These approaches comprise advanced technical solutions able to capture huge amounts of generated data, scrutinise the collected data to eliminate unwanted data, measure the quality of the inferred data, and transform the amended data for further data analysis. Furthermore, the book presents solutions to derive knowledge and sentiments from BSD and to provide social data classification and prediction. The approaches in this book also incorporate several technologies such as semantic discovery, sentiment analysis, affective computing and machine learning. This book has additional special feature enriched with numerous illustrations such as tables, graphs and charts incorporating advanced visualisation tools in accessible an attractive display.
Download or read book Data Mining Approaches for Big Data and Sentiment Analysis in Social Media written by Brij Gupta and published by . This book was released on 2021 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book explores the key concepts of data mining and utilizing them on online social media platforms, offering valuable insight into data mining approaches for big data and sentiment analysis in online social media and covering many important security and other aspects and current trends"--
Download or read book Big Data in Complex and Social Networks written by My T. Thai and published by CRC Press. This book was released on 2016-12-01 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent developments on the theoretical, algorithmic, and application aspects of Big Data in Complex and Social Networks. The book consists of four parts, covering a wide range of topics. The first part of the book focuses on data storage and data processing. It explores how the efficient storage of data can fundamentally support intensive data access and queries, which enables sophisticated analysis. It also looks at how data processing and visualization help to communicate information clearly and efficiently. The second part of the book is devoted to the extraction of essential information and the prediction of web content. The book shows how Big Data analysis can be used to understand the interests, location, and search history of users and provide more accurate predictions of User Behavior. The latter two parts of the book cover the protection of privacy and security, and emergent applications of big data and social networks. It analyzes how to model rumor diffusion, identify misinformation from massive data, and design intervention strategies. Applications of big data and social networks in multilayer networks and multiparty systems are also covered in-depth.
Download or read book Handbook of Research on Emerging Trends and Applications of Machine Learning written by Solanki, Arun and published by IGI Global. This book was released on 2019-12-13 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.
Download or read book Data Mining for the Social Sciences written by Paul Attewell and published by Univ of California Press. This book was released on 2015-05 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The amount of information collected on human behavior every day is staggering, and exponentially greater than at any time in the past. At the same time, we are inundated by stories of powerful algorithms capable of churning through this sea of data and uncovering patterns. These techniques go by many names - data mining, predictive analytics, machine learning - and they are being used by governments as they spy on citizens and by huge corporations are they fine-tune their advertising strategies. And yet social scientists continue mainly to employ a set of analytical tools developed in an earlier era when data was sparse and difficult to come by. In this timely book, Paul Attewell and David Monaghan provide a simple and accessible introduction to Data Mining geared towards social scientists. They discuss how the data mining approach differs substantially, and in some ways radically, from that of conventional statistical modeling familiar to most social scientists. They demystify data mining, describing the diverse set of techniques that the term covers and discussing the strengths and weaknesses of the various approaches. Finally they give practical demonstrations of how to carry out analyses using data mining tools in a number of statistical software packages. It is the hope of the authors that this book will empower social scientists to consider incorporating data mining methodologies in their analytical toolkits"--Provided by publisher.
Download or read book Social Media Data Mining and Analytics written by Gabor Szabo and published by John Wiley & Sons. This book was released on 2018-10-23 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn: The four key characteristics of online services-users, social networks, actions, and content The full data discovery lifecycle-data extraction, storage, analysis, and visualization How to work with code and extract data to create solutions How to use Big Data to make accurate customer predictions How to personalize the social media experience using machine learning Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.
Download or read book Big Data in Computational Social Science and Humanities written by Shu-Heng Chen and published by Springer. This book was released on 2018-11-21 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume focuses on big data implications for computational social science and humanities from management to usage. The first part of the book covers geographic data, text corpus data, and social media data, and exemplifies their concrete applications in a wide range of fields including anthropology, economics, finance, geography, history, linguistics, political science, psychology, public health, and mass communications. The second part of the book provides a panoramic view of the development of big data in the fields of computational social sciences and humanities. The following questions are addressed: why is there a need for novel data governance for this new type of data?, why is big data important for social scientists?, and how will it revolutionize the way social scientists conduct research? With the advent of the information age and technologies such as Web 2.0, ubiquitous computing, wearable devices, and the Internet of Things, digital society has fundamentally changed what we now know as "data", the very use of this data, and what we now call "knowledge". Big data has become the standard in social sciences, and has made these sciences more computational. Big Data in Computational Social Science and Humanities will appeal to graduate students and researchers working in the many subfields of the social sciences and humanities.
Download or read book Social Media Mining written by Reza Zafarani and published by Cambridge University Press. This book was released on 2014-04-28 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrates social media, social network analysis, and data mining to provide an understanding of the potentials of social media mining.
Download or read book Mining the Social Web written by Matthew Russell and published by "O'Reilly Media, Inc.". This book was released on 2011-01-21 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed. Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools. Get a straightforward synopsis of the social web landscape Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn Learn how to employ easy-to-use Python tools to slice and dice the data you collect Explore social connections in microformats with the XHTML Friends Network Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits "Let Matthew Russell serve as your guide to working with social data sets old (email, blogs) and new (Twitter, LinkedIn, Facebook). Mining the Social Web is a natural successor to Programming Collective Intelligence: a practical, hands-on approach to hacking on data from the social Web with Python." --Jeff Hammerbacher, Chief Scientist, Cloudera "A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google
Download or read book Big Data and Social Science written by Ian Foster and published by CRC Press. This book was released on 2020-11-17 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.
Download or read book Big Data in Context written by Thomas Hoeren and published by Springer. This book was released on 2017-10-17 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This book sheds new light on a selection of big data scenarios from an interdisciplinary perspective. It features legal, sociological and economic approaches to fundamental big data topics such as privacy, data quality and the ECJ’s Safe Harbor decision on the one hand, and practical applications such as smart cars, wearables and web tracking on the other. Addressing the interests of researchers and practitioners alike, it provides a comprehensive overview of and introduction to the emerging challenges regarding big data.All contributions are based on papers submitted in connection with ABIDA (Assessing Big Data), an interdisciplinary research project exploring the societal aspects of big data and funded by the German Federal Ministry of Education and Research.This volume was produced as a part of the ABIDA project (Assessing Big Data, 01IS15016A-F). ABIDA is a four-year collaborative project funded by the Federal Ministry of Education and Research. However the views and opinions expressed in this book reflect only the authors’ point of view and not necessarily those of all members of the ABIDA project or the Federal Ministry of Education and Research.
Download or read book Data Science and Social Research written by N. Carlo Lauro and published by Springer. This book was released on 2017-11-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from the international conference on Data Science & Social Research, held in Naples, Italy in February 2016, and will appeal to researchers in the social sciences working in academia as well as in statistical institutes and offices.
Download or read book Social Network Data Analytics written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2011-03-18 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.
Download or read book Big Data Analytics written by Mrutyunjaya Panda and published by CRC Press. This book was released on 2018-12-12 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social networking has increased drastically in recent years, resulting in an increased amount of data being created daily. Furthermore, diversity of issues and complexity of the social networks pose a challenge in social network mining. Traditional algorithm software cannot deal with such complex and vast amounts of data, necessitating the development of novel analytic approaches and tools. This reference work deals with social network aspects of big data analytics. It covers theory, practices and challenges in social networking. The book spans numerous disciplines like neural networking, deep learning, artificial intelligence, visualization, e-learning in higher education, e-healthcare, security and intrusion detection.
Download or read book Big Data Meets Survey Science written by Craig A. Hill and published by John Wiley & Sons. This book was released on 2020-09-29 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a clear view of the utility and place for survey data within the broader Big Data ecosystem This book presents a collection of snapshots from two sides of the Big Data perspective. It assembles an array of tangible tools, methods, and approaches that illustrate how Big Data sources and methods are being used in the survey and social sciences to improve official statistics and estimates for human populations. It also provides examples of how survey data are being used to evaluate and improve the quality of insights derived from Big Data. Big Data Meets Survey Science: A Collection of Innovative Methods shows how survey data and Big Data are used together for the benefit of one or more sources of data, with numerous chapters providing consistent illustrations and examples of survey data enriching the evaluation of Big Data sources. Examples of how machine learning, data mining, and other data science techniques are inserted into virtually every stage of the survey lifecycle are presented. Topics covered include: Total Error Frameworks for Found Data; Performance and Sensitivities of Home Detection on Mobile Phone Data; Assessing Community Wellbeing Using Google Street View and Satellite Imagery; Using Surveys to Build and Assess RBS Religious Flag; and more. Presents groundbreaking survey methods being utilized today in the field of Big Data Explores how machine learning methods can be applied to the design, collection, and analysis of social science data Filled with examples and illustrations that show how survey data benefits Big Data evaluation Covers methods and applications used in combining Big Data with survey statistics Examines regulations as well as ethical and privacy issues Big Data Meets Survey Science: A Collection of Innovative Methods is an excellent book for both the survey and social science communities as they learn to capitalize on this new revolution. It will also appeal to the broader data and computer science communities looking for new areas of application for emerging methods and data sources.
Download or read book Innovations in Big Data Mining and Embedded Knowledge written by Anna Esposito and published by Springer. This book was released on 2019-07-03 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the usefulness of knowledge discovery through data mining. With this aim, contributors from different fields propose concrete problems and applications showing how data mining and discovering embedded knowledge from raw data can be beneficial to social organizations, domestic spheres, and ICT markets. Data mining or knowledge discovery in databases (KDD) has received increasing interest due to its focus on transforming large amounts of data into novel, valid, useful, and structured knowledge by detecting concealed patterns and relationships. The concept of knowledge is broad and speculative and has promoted epistemological debates in western philosophies. The intensified interest in knowledge management and data mining stems from the difficulty in identifying computational models able to approximate human behaviors and abilities in resolving organizational, social, and physical problems. Current ICT interfaces are not yet adequately advanced to support and simulate the abilities of physicians, teachers, assistants or housekeepers in domestic spheres. And unlike in industrial contexts where abilities are routinely applied, the domestic world is continuously changing and unpredictable. There are challenging questions in this field: Can knowledge locked in conventions, rules of conduct, common sense, ethics, emotions, laws, cultures, and experiences be mined from data? Is it acceptable for automatic systems displaying emotional behaviors to govern complex interactions based solely on the mining of large volumes of data? Discussing multidisciplinary themes, the book proposes computational models able to approximate, to a certain degree, human behaviors and abilities in resolving organizational, social, and physical problems. The innovations presented are of primary importance for: a. The academic research community b. The ICT market c. Ph.D. students and early stage researchers d. Schools, hospitals, rehabilitation and assisted-living centers e. Representatives from multimedia industries and standardization bodies