EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Climate Time Series Analysis

Download or read book Climate Time Series Analysis written by Manfred Mudelsee and published by Springer. This book was released on 2014-06-27 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. “....comprehensive mathematical and statistical summary of time-series analysis techniques geared towards climate applications...accessible to readers with knowledge of college-level calculus and statistics.” (Computers and Geosciences) “A key part of the book that separates it from other time series works is the explicit discussion of time uncertainty...a very useful text for those wishing to understand how to analyse climate time series.” (Journal of Time Series Analysis) “...outstanding. One of the best books on advanced practical time series analysis I have seen.” (David J. Hand, Past-President Royal Statistical Society)

Book Smoothing Techniques for Curve Estimation

Download or read book Smoothing Techniques for Curve Estimation written by T. Gasser and published by Springer. This book was released on 2006-12-08 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Structural Vector Autoregressive Analysis

Download or read book Structural Vector Autoregressive Analysis written by Lutz Kilian and published by Cambridge University Press. This book was released on 2017-11-23 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the econometric foundations of structural vector autoregressive modeling, as used in empirical macroeconomics, finance, and related fields.

Book Statistical Theory and Method Abstracts

Download or read book Statistical Theory and Method Abstracts written by and published by . This book was released on 2000 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Forecasting  Structural Time Series Models and the Kalman Filter

Download or read book Forecasting Structural Time Series Models and the Kalman Filter written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 1990 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthesis of concepts and materials, that ordinarily appear separately in time series and econometrics literature, presents a comprehensive review of theoretical and applied concepts in modeling economic and social time series.

Book Bulletin   Institute of Mathematical Statistics

Download or read book Bulletin Institute of Mathematical Statistics written by Institute of Mathematical Statistics and published by . This book was released on 1996 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Time Series Modeling with Applications in R

Download or read book Introduction to Time Series Modeling with Applications in R written by Genshiro Kitagawa and published by CRC Press. This book was released on 2020-08-10 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: [This book] reflects the extensive experience and significant contributions of the author to non-linear and non-Gaussian modeling. ... [It] is a valuable book, especially with its broad and accessible introduction of models in the state-space framework. –Statistics in Medicine What distinguishes this book from comparable introductory texts is the use of state-space modeling. Along with this come a number of valuable tools for recursive filtering and smoothing, including the Kalman filter, as well as non-Gaussian and sequential Monte Carlo filters. –MAA Reviews Introduction to Time Series Modeling with Applications in R, Second Edition covers numerous stationary and nonstationary time series models and tools for estimating and utilizing them. The goal of this book is to enable readers to build their own models to understand, predict and master time series. The second edition makes it possible for readers to reproduce examples in this book by using the freely available R package TSSS to perform computations for their own real-world time series problems. This book employs the state-space model as a generic tool for time series modeling and presents the Kalman filter, the non-Gaussian filter and the particle filter as convenient tools for recursive estimation for state-space models. Further, it also takes a unified approach based on the entropy maximization principle and employs various methods of parameter estimation and model selection, including the least squares method, the maximum likelihood method, recursive estimation for state-space models and model selection by AIC. Along with the standard stationary time series models, such as the AR and ARMA models, the book also introduces nonstationary time series models such as the locally stationary AR model, the trend model, the seasonal adjustment model, the time-varying coefficient AR model and nonlinear non-Gaussian state-space models. About the Author: Genshiro Kitagawa is a project professor at the University of Tokyo, the former Director-General of the Institute of Statistical Mathematics, and the former President of the Research Organization of Information and Systems.

Book Smoothness Priors Analysis of Time Series

Download or read book Smoothness Priors Analysis of Time Series written by Genshiro Kitagawa and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.

Book Stochastic Processes  Modeling and Simulation

Download or read book Stochastic Processes Modeling and Simulation written by D N Shanbhag and published by Gulf Professional Publishing. This book was released on 2003-02-24 with total page 1028 pages. Available in PDF, EPUB and Kindle. Book excerpt: This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.

Book Bayesian Statistical Modelling

Download or read book Bayesian Statistical Modelling written by Peter Congdon and published by John Wiley & Sons. This book was released on 2007-04-04 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

Book Applied Linear Statistical Models

Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.

Book Time Series Analysis and Applications to Geophysical Systems

Download or read book Time Series Analysis and Applications to Geophysical Systems written by David Brillinger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of a two volume set based on a recent IMA program of the same name. The goal of the program and these books is to develop a community of statistical and other scientists kept up-to-date on developments in this quickly evolving and interdisciplinary field. Consequently, these books present recent material by distinguished researchers. Topics discussed in Part I include nonlinear and non- Gaussian models and processes (higher order moments and spectra, nonlinear systems, applications in astronomy, geophysics, engineering, and simulation) and the interaction of time series analysis and statistics (information model identification, categorical valued time series, nonparametric and semiparametric methods). Self-similar processes and long-range dependence (time series with long memory, fractals, 1/f noise, stable noise) and time series research common to engineers and economists (modeling of multivariate and possibly non-stationary time series, state space and adaptive methods) are discussed in Part II.

Book Nonlinear Time Series Analysis

Download or read book Nonlinear Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2018-09-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.

Book Time Series Analysis and Applications to Geophysical Systems

Download or read book Time Series Analysis and Applications to Geophysical Systems written by Enders Anthony Robinson and published by Springer Science & Business Media. This book was released on 2004-09-17 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series methods are essential tools in the analysis of many geophysical systems. This volume, which consists of papers presented by a select, international group of statistical and geophysical experts at a Workshop on Time Series Analysis and Applications to Geophysical Systems at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota from November 12-15, 2001 as part of the IMA's Thematic Year on Mathematics in the Geosciences, explores the application of recent advances in time series methodology to a host of important problems ranging from climate change to seismology. The works in the volume deal with theoretical and methodological issues as well as real geophysical applications, and are written with both statistical and geophysical audiences in mind. Important contributions to time series modeling, estimation, prediction, and deconvolution are presented. The results are applied to a wide range of geophysical applications including the investigation and prediction of climatic variations, the interpretation of seismic signals, the estimation of flooding risk, the description of permeability in Chinese oil fields, and the modeling of NOx decomposition from thermal power plants.

Book Bayesian inference with INLA

Download or read book Bayesian inference with INLA written by Virgilio Gomez-Rubio and published by CRC Press. This book was released on 2020-02-20 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.

Book Random Coefficient Autoregressive Models  An Introduction

Download or read book Random Coefficient Autoregressive Models An Introduction written by D.F. Nicholls and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph we have considered a class of autoregressive models whose coefficients are random. The models have special appeal among the non-linear models so far considered in the statistical literature, in that their analysis is quite tractable. It has been possible to find conditions for stationarity and stability, to derive estimates of the unknown parameters, to establish asymptotic properties of these estimates and to obtain tests of certain hypotheses of interest. We are grateful to many colleagues in both Departments of Statistics at the Australian National University and in the Department of Mathematics at the University of Wo110ngong. Their constructive criticism has aided in the presentation of this monograph. We would also like to thank Dr M. A. Ward of the Department of Mathematics, Australian National University whose program produced, after minor modifications, the "three dimensional" graphs of the log-likelihood functions which appear on pages 83-86. Finally we would like to thank J. Radley, H. Patrikka and D. Hewson for their contributions towards the typing of a difficult manuscript. IV CONTENTS CHAPTER 1 INTRODUCTION 1. 1 Introduction 1 Appendix 1. 1 11 Appendix 1. 2 14 CHAPTER 2 STATIONARITY AND STABILITY 15 2. 1 Introduction 15 2. 2 Singly-Infinite Stationarity 16 2. 3 Doubly-Infinite Stationarity 19 2. 4 The Case of a Unit Eigenvalue 31 2. 5 Stability of RCA Models 33 2. 6 Strict Stationarity 37 Appendix 2. 1 38 CHAPTER 3 LEAST SQUARES ESTIMATION OF SCALAR MODELS 40 3.

Book The Oxford Handbook of Bayesian Econometrics

Download or read book The Oxford Handbook of Bayesian Econometrics written by John Geweke and published by Oxford University Press. This book was released on 2011-09-29 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.