EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sludge Batch 9 Simulant Runs Using the Nitric glycolic Acid Flowsheet

Download or read book Sludge Batch 9 Simulant Runs Using the Nitric glycolic Acid Flowsheet written by and published by . This book was released on 2016 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility's (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC's largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

Book Actual Waste Demonstration of the Nitric Glycolic Flowsheet for Sludge Batch 9 Qualification

Download or read book Actual Waste Demonstration of the Nitric Glycolic Flowsheet for Sludge Batch 9 Qualification written by and published by . This book was released on 2016 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis.

Book Sludge Batch 9 Follow on Actual waste Testing for the Nitric glycolic Flowsheet

Download or read book Sludge Batch 9 Follow on Actual waste Testing for the Nitric glycolic Flowsheet written by and published by . This book was released on 2017 with total page 51 pages. Available in PDF, EPUB and Kindle. Book excerpt: An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

Book Impact of Scaling on the Nitric glycolic Acid Flowsheet

Download or read book Impact of Scaling on the Nitric glycolic Acid Flowsheet written by and published by . This book was released on 2016 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

Book GLYCOLIC NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

Download or read book GLYCOLIC NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT & QAP). The details regarding the simulant preparation and analysis have been documented previously.

Book SLUDGE BATCH 4 SIMULANT FLOWSHEET STUDIES

Download or read book SLUDGE BATCH 4 SIMULANT FLOWSHEET STUDIES written by M. Stone and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 3 (SB3) processing to Sludge Batch 4 (SB4) processing in early fiscal year 2007. Tests were conducted using non-radioactive simulants of the expected SB4 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) process. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT & QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB4 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB4 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the sludges blended to prepare SB4 and the estimated SB3 heel mass. The following TTR requirements were addressed in this testing: (1) Hydrogen and nitrous oxide generation rates as a function of acid stoichiometry; (2) Acid quantities and processing times required for mercury removal; (3) Acid quantities and processing times required for nitrite destruction; and (4) Impact of SB4 composition (in particular, oxalate, manganese, nickel, mercury, and aluminum) on DWPF processing (i.e. acid addition strategy, foaming, hydrogen generation, REDOX control, rheology, etc.).

Book Sludge Batch 4 Without Tank 4 Simulant Flowsheet Studies

Download or read book Sludge Batch 4 Without Tank 4 Simulant Flowsheet Studies written by CONNIE. HERMAN and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book SLUDGE BATCH 6 PHASE II FLOWSHEET SIMULATIONS

Download or read book SLUDGE BATCH 6 PHASE II FLOWSHEET SIMULATIONS written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Two Sludge Receipt and Adjustment Tank (SRAT) runs were used to demonstrate that a fairly wide window of acid stoichiometry was available for processing SB6 Phase II flowsheet simulant (Tank 40 simulant) while still meeting the dual goals of acceptable nitrate destruction and controlled hydrogen generation. Phase II was an intermediate flowsheet study for the projected composition of Tank 40 after transfer of SB6/Tank 51 sludge to the heel of SB5. The composition was based on August 2009 projections. A window of about 50% in total acid was found between acceptable nitrite destruction and excessive hydrogen generation.

Book Glycolic   Formic Acid Flowsheet Development

Download or read book Glycolic Formic Acid Flowsheet Development written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Flowsheet testing was performed to further develop the nitric/glycolic/formic acid flowsheet as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All other processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Eight runs were performed in total, including the baseline run. The baseline nitric/formic flowsheet run was extremely difficult to process under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. In the nitric/glycolic/formic flowsheet runs, mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. It is recommended that DWPF continue to support development of the nitric/glycolic/formic flowsheet. Although experience is limited at this time, this flowsheet meets or outperforms the current flowsheet in many regards, including off-gas generation, mercury removal, product rheology and general ease of processing. Additional flowsheet testing will allow for a more thorough understanding of the chemistry and effectiveness of the flowsheet over a range of sludge compositions and formic/glycolic ratios. This testing will also show whether the REDOX and metal solubility concerns with this change in the flowsheet can be addressed by just adjusting the volumes of glycolic acid added. The outstanding issues regarding the glycolic/formic flowsheet include increasing understanding of the impact on glass REDOX control and increased metal solubility, particularly iron, during processing. Additionally, evaluations of the utility of the flowsheet over varying sludge compositions should be completed to ensure flowsheet robustness. Work has already been initiated to further understand the REDOX and iron solubility areas.

Book Glycolic Formic Acid Flowsheet Sludge Matrix Study

Download or read book Glycolic Formic Acid Flowsheet Sludge Matrix Study written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Testing was completed to demonstrate the viability of the newly developed glycolic acid/formic acid flowsheet on processing in the Defense Waste Processing Facility's (DWPF) Chemical Process Cell (CPC). The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in DWPF. Four sludge simulants were prepared to cover two compositional ranges in the waste. The first was high iron/low aluminum versus low iron/high aluminum (referred to as HiFe or LoFe in this report). The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium (referred to as HiMn or LoMn in this report). These two options can be combined to form four distinct sludge compositions. The sludge matrix study called for testing each of these four simulants near the minimum acid required for nitrite destruction (100% acid stoichiometry) and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid (150% acid stoichiometry). Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants were used for high and low acid testing. Eight planned experiments (GF26 to GF33) were completed to demonstrate the viability of the glycolic-formic flowsheet. Composition and physical property measurements were made on the SRAT product. Composition measurements were made on the condensate from the Mercury Water Wash Tank (MWWT), Formic Acid Vent Condenser (FAVC), ammonia scrubber and on SRAT samples pulled throughout the SRAT cycle. Updated values for formate loss and nitrite-tonitrate conversion were found that can be used in the acid calculations for future sludge matrix process simulations with the glycolic acid/formic acid flowsheet. Preliminary results of the initial testing indicate: (1) Hydrogen generation rate was very low throughout all SRAT cycles. (2) The mercury concentration of the SRAT product was below the 0.8 wt% limit in all runs. (3) Nitrite in the SRAT product was

Book SLUDGE BATCH SUPPLEMENTAL SRAT RUNS EFFECTS OF YIELD STRESS AND CYCLE TIME INCREASE

Download or read book SLUDGE BATCH SUPPLEMENTAL SRAT RUNS EFFECTS OF YIELD STRESS AND CYCLE TIME INCREASE written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Defense Waste Processing Facility (DWPF) has transitioned from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing. Phase III-Tank 40 Chemical Process Cell (CPC) flowsheet simulations have been completed to determine the initial processing conditions for the DWPF transition. The impact of higher yield stress (SB-25) and cycle time extension (SB6-26) on the physical and chemical effects of SB6 processing during the SRAT (Sludge Receipt and Adjustment Tank) cycle were evaluated. No significant impacts on the SRAT chemistry were noted during the higher yield stress run. In particular, no impact on mercury stripping was noted, indicating that settling of elemental mercury was not the primary factor in the low mercury recovery noted in the flowsheet testing. The SRAT product from this run retained the higher yield stress of the starting sludge. The run indicated that ultrasonication is an effective tool to increase the yield stress of simulants to targeted values and the chemistry of downstream processing is not impacted. Significant differences were noted in the cycle time extension test compared to the Phase III flowsheet baseline runs. Large decreases in the ammonia and hydrogen generation rates were noted along with reduced mercury stripping efficiency. The latter effect is similar to that of operating under a high acid stoichiometry. It is conceivable that, under the distinctly different conditions of high formic acid concentration (high acid run) or slow formic acid addition (extended run), that mercury could form amalgams with noble metals, possibly rendering both inert. Thus, the removal of free mercury and noble metals could decrease the rate of catalytic formic acid reactions which would decrease generation of ammonium and hydrogen. The potential underlying reasons for the behavior noted during this run would require additional testing.

Book Advanced Oxidation Processes for Water and Wastewater Treatment

Download or read book Advanced Oxidation Processes for Water and Wastewater Treatment written by Simon Parsons and published by IWA Publishing. This book was released on 2004-03-01 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The suitability of Advanced Oxidation Processes (AOPs) for pollutant degradation was recognised in the early 1970s and much research and development work has been undertaken to commercialise some of these processes. AOPs have shown great potential in treating pollutants at both low and high concentrations and have found applications as diverse as ground water treatment, municipal wastewater sludge destruction and VOCs control. Advanced Oxidation Processes for Water and Wastewater Treatment is an overview of the advanced oxidation processes currently used or proposed for the remediation of water, wastewater, odours and sludge. The book contains two opening chapters which present introductions to advanced oxidation processes and a background to UV photolysis, seven chapters focusing on individual advanced oxidation processes and, finally, three chapters concentrating on selected applications of advanced oxidation processes. Advanced Oxidation Processes for Water and Wastewater Treatment will be invaluable to readers interested in water and wastewater treatment processes, including professionals and suppliers, as well as students and academics studying in this area. Dr Simon Parsons is a Senior Lecturer in Water Sciences at Cranfield University with ten years' experience of industrial and academic research and development.

Book Chemical Oxidation Applications for Industrial Wastewaters

Download or read book Chemical Oxidation Applications for Industrial Wastewaters written by Olcay Tunay and published by IWA Publishing. This book was released on 2010-10-12 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most recent scientific and technological developments (state-of-the-art) in the field of chemical oxidation processes applicable for the efficient treatment of biologically-difficult-to-degrade, toxic and/or recalcitrant effluents originating from different manufacturing processes. It is a comprehensive review of process and pollution profiles as well as conventional, advanced and emerging treatment processes & technologies developed for the most relevant and pollution (wet processing)-intensive industrial sectors. It addresses chemical/photochemical oxidative treatment processes, case-specific treatability problems of major industrial sectors, emerging (novel) as well as pilot/full-scale applications, process integration, treatment system design & sizing criteria (figure-of-merits), cost evaluation and success stories in the application of chemical oxidative treatment processes. Chemical Oxidation Applications for Industrial Wastewaters is an essential reference for lecturers, researchers, industrial and environmental engineers and practitioners working in the field of environmental science and engineering. Visit the IWA WaterWiki to read and share material related to this title: http://www.iwawaterwiki.org/xwiki/bin/view/Articles/CHEMICALOXIDATIONAPPLICATIONSFORINDUSTRIALWASTEWATERS Authors: Professor Olcay Tünay, Professor Isik Kabdasli, Associate Professor Idil Arslan-Alaton and Assistant Professor Tugba Ölmez-Hanci, Environmental Engineering Department, Istanbul Technical University, Turkey.

Book Processing of Heavy Crude Oils

Download or read book Processing of Heavy Crude Oils written by Ramasamy Marappa Gounder and published by . This book was released on 2019-12-18 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book State of the art Report on the Progress of Nuclear Fuel Cycle Chemistry

Download or read book State of the art Report on the Progress of Nuclear Fuel Cycle Chemistry written by and published by . This book was released on 2018 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implementation of advanced nuclear systems requires that new technologies associated with the back end of the fuel cycle are developed. The separation of minor actinides from other fuel components is one of the advanced concepts being studied to help close the nuclear fuel cycle and to improve the long-term effects on the performance of geological repositories. Separating spent fuel elements and subsequently converting them through transmutation into short-lived nuclides should considerably reduce the longterm risks associated with nuclear power generation.

Book Solvent Extraction of Uranium

Download or read book Solvent Extraction of Uranium written by and published by . This book was released on 1957 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chemical Water and Wastewater Treatment V

Download or read book Chemical Water and Wastewater Treatment V written by Hermann H. Hahn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: It was intended to return with the International Gothenburg Symposia every other time to the birthplace of these events, Gothenburg in Sweden. But instead the 8th symposium has been invited to be organized and held in Prague, i. e. in the midst of Central and Eastern Europe a region now keen on intensified environmental control. This attests that the symposia have attained such standing in the interna tional world of operators, designers, officers and researchers in water treatment technology that their presence in various parts of the world has been requested. And this ever growing significance, in short the success of this conference series, stems form the fact that the symposia offer a unique platform for the exchange of ideas and experiences on all aspects of water and wastewater treatment between administrators, engineers and scientists. The content of this book, i. e. the schedule of the symposium lectures, results for the most part from a vast response to an international call for papers. Many excellent contributions are included in this volume but at the same time many outstanding ones could not be included for lack of time and space. The total sum of these contributions document again the development in the field, both in terms of new technological (and other) developments as well as public and administrative acceptance and approval of solutions offered.