EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simulation of Complex Three dimensional Flows

Download or read book Simulation of Complex Three dimensional Flows written by George S. Diewert and published by . This book was released on 1985 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computation of Three Dimensional Complex Flows

Download or read book Computation of Three Dimensional Complex Flows written by Michel Deville and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Der Sammelband enthält Beiträge einer Tagung über die Simulation von dreidimensionalen Flüssigkeiten. Sie geben einen Überblick über den Stand des Wissens auf dem Gebiet der numerischen Simulation der Turbulenz, angewandt auf eine weite Spanne von Problemen wie Aerodynamik, Nicht-Newtonsche Flüssigkeiten, Konvektion.This volume contains the material presented at the IMACS-COST Conference on CFD, Three-Dimensional Complex Flows, held in Lausanne (Switzerland), September 13 - 15, 1995. It gives an overview of the current state of numerical simulation and turbulence modelling applied to a wide range of fluid flow problems such as an example aerodynamics, non-Newtonian flows, transition, thermal convection.

Book Three dimensional Numerical Simulation of Fluid Flow and Heat Transfer in Fin and tube Heat Exchangers at Different Flow Regimes

Download or read book Three dimensional Numerical Simulation of Fluid Flow and Heat Transfer in Fin and tube Heat Exchangers at Different Flow Regimes written by Leslye Paniagua Sánchez and published by . This book was released on 2014 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis aims at unifying two distinct branches of work within the Heat Transfer Technological Center (CTTC). On one side, extensive experimental work has been done during the past years by the researchers of the laboratory. This experimental work has been complemented with numerical models for the calculation of fin and tube heat exchangers thermal and fluid dynamic behavior. Such numerical models can be referred to as fast numerical tool which can be used for industrial rating and design purposes. On the other hand, the scientists working at the research center have successfully developed a general purpose multi-physics Computational Fluid Dynamics (CFD) code (TermoFluids). This high performance CFD solver has been extensively used by the co-workers of the group mainly to predict complex flows of great academic interest. The idea of bringing together this two branches, comes from the necessity of a reliable numerical platform with detailed local data of the flow and heat transfer on diverse heat exchanger applications. Being able to use local heat transfer coefficients as an input on the rating and design tool will lead to affordable and accurate prediction of industrial devices performance, by which the center can propose enhanced alternatives to its industrial partners. To accomplish these goals, several contributions have been made to the existing TermoFluids software which is in continuous evolution in order to meet the competitive requirements. The most significant problematics to adequately attack this problem are analyzed and quite interesting recommendations are given. Some of the challenging arising issues involve the generation of suitable and affordable meshes, the implementation and validation of three dimensional periodic boundary condition and coupling of different domains with important adjustments for the study of cases with different flow physics like time steps and thermal development. Turbulence is present in most of engineering flows, and refrigeration evaporator heat exchangers are not an exception. The presence of many tubes (acting like bluff bodies for the flow) arranged in different configurations and the fact that the flow is also confined by fins, create complex three dimensional flow features that have usually turbulent or transition to turbulent regime. Therefore, three dimensional turbulent forced convection in a matrix of wall-bounded pins is analyzed. Large Eddy Simulations (LES) are performed in order to assess the performance of three different subgrid-scale models, namely WALE, QR and VMS. The Reynolds numbers of the study were set to 3000, 10000 and 30000. Some of the main results included are the pressure coefficient around the cylinders, the averaged Nusselt number at the endwalls and vorticity of the flow. The final part of the thesis is devoted to study the three dimensional fluid flow and conjugated heat transfer parameters encountered in a plate fin and tube heat exchanger used for no-frost refrigeration. The numerical code and post processing tools are validated with a very similar but smaller case of a heat exchanger with two rows of tubes at low Reynolds for which experimental data is available. The next analysis presented is a typical configuration for no-frost evaporators with double fin spacing (for which very few numerical data is reported in the scientific literature). Conjugated convective heat transfer in the flow field and heat conduction in the fins are coupled and considered. The influence of some geometrical and flow regime parameters is analyzed for design purposes. In conclusion, the implementations and general contributions of the present thesis together with the previous existent multi-physics computational code, has proved to be capable to perform successful top edge three dimensional simulations of the flow features and heat transfer mechanisms observed on heat exchanger devices.

Book Numerical Simulation of Fluid Flow and Heat Mass Transfer Processes

Download or read book Numerical Simulation of Fluid Flow and Heat Mass Transfer Processes written by N.C. Markatos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid flow is not an easy subject. Not only is the mathematical representation of physico-chemical hydrodynamics complex, but the accurate numerical solution of the resulting equations has challenged many numerate scientists and engineers over the past two decades. The modelling of physical phenomena and testing of new numerical schemes has been aided in the last 10 years or so by a number of basic fluid flow programs (MAC, TEACH, 2-E-FIX, GENMIX, etc). However, in 1981 a program (perhaps more precisely, a software product) called PHOENICS was released that was then (and still remains) arguably, the most powerful computational tool in the whole area of endeavour surrounding fluid dynamics. The aim of PHOENICS is to provide a framework for the modelling of complex processes involving fluid flow, heat transfer and chemical reactions. PHOENICS has now been is use for four years by a wide range of users across the world. It was thus perceived as useful to provide a forum for PHOENICS users to share their experiences in trying to address a wide range of problems. So it was that the First International PHOENICS Users Conference was conceived and planned for September 1985. The location, at the Dartford Campus of Thames Polytechnic, in the event, proved to be an ideal site, encouraging substantial interaction between the participants.

Book Modeling Complex Turbulent Flows

Download or read book Modeling Complex Turbulent Flows written by Manuel D. Salas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.

Book Microscopic Simulations of Complex Flows

Download or read book Microscopic Simulations of Complex Flows written by Michel Mareschal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of a workshop which was held in Brussels during the month of August 1989. A strong motivation for organizing this workshop was to bring together people who have been involved in the microscopic simulation of phenomena occuring on "large" space and time scales. Indeed, results obtained in the last years by different groups tend to support the idea that macroscopic behavior already appears in systems small enough so as to be modelled by a collection of interacting particles on a (super) computer. Such an approach is certainly desirable to study situations where no satisfactory phenomenological theory is known to hold, or where solutions of the equations are too hard to obtain numerically. It is also interesting from a more fundamental point of view, namely the investigation of the limits of validity of the macroscopic description itself. The main technique used in bridging the gap between the macro and micro worlds has been the molecular dynamics simulations, that is the numerical solution of the equations of motion of the model particles which constitute the system under study, a gas, a liquid or even a solid. However, this technique is by no means the only one.

Book Numerical simulations of complex three dimensional viscous flows

Download or read book Numerical simulations of complex three dimensional viscous flows written by Erlendur Steinthorsson and published by . This book was released on 1991 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation of Turbulent Flows and Noise Generation

Download or read book Numerical Simulation of Turbulent Flows and Noise Generation written by Christophe Brun and published by Springer Science & Business Media. This book was released on 2009-03-07 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach. This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.

Book Modeling Complex Turbulent Flows

Download or read book Modeling Complex Turbulent Flows written by Manuel D. Salas and published by Springer Science & Business Media. This book was released on 1999-04-30 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.

Book Calculation of Complex Turbulent Flows

Download or read book Calculation of Complex Turbulent Flows written by George Tzabiras and published by Witpress. This book was released on 2000 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: A selection of invited chapters focusing on developments in the application of Computational Fluid Dynamics (CFD) to compressible or incompressible flows dominated by turbulence effects. These may be applied to complex geometrical configurations or flow-fields in simpler geometries requiring higher-order turbulence modelling, or suitably modified low-order models, to calculate crucial parameters such as instabilities, transition, separation, accurate description of velocity and scalar fields, and local and total forces.

Book Large Eddy Simulation of Complex Engineering and Geophysical Flows

Download or read book Large Eddy Simulation of Complex Engineering and Geophysical Flows written by Boris Galperin and published by Cambridge University Press. This book was released on 1993-11-26 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1993, this book was the first to offer a comprehensive review of large eddy simulations (LES) - the history, state of the art, and promising directions for research. Among topics covered are fundamentals of LES; LES of incompressible, compressible, and reacting flows; LES of atmospheric, oceanic, and environmental flows; and LES and massivelt parallel computing. The book grew out of an international workshop that, for the first time, brought together leading researchers in engineering and geophysics to discuss developments and applications of LES models in their respective fields. It will be of value to anyone with an interest in turbulence modelling.

Book Flow Simulation with High Performance Computers II

Download or read book Flow Simulation with High Performance Computers II written by Ernst Heinrich Hirschel and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Der Band enthält den Abschlußbericht des DFG-Schwerpunktprogramms "Flußsimulation mit Höchstleistungsrechnern". Es führt die Arbeiten fort, die schon als Band 38 in der Reihe "Notes on Numerical Fluid Mechanics" erschienen sind.Work is reported, which was sponsored by the Deutsche Forschungsgemeinschaft from 1993 to 1995. Scientists from numerical mathematics, fluid mechanics, aerodynamics, and turbomachinery present their work on flow simulation with massively parallel systems, on the direct and large-eddy simulation of turbulence, and on mathematical foundations, general solution techniques and applications. Results are reported from benchmark computations of laminar flow around a cylinder, in which seventeen groups participated.

Book A New Numerical Method for the Simulation of Three Dimensional Flow in a Pipe

Download or read book A New Numerical Method for the Simulation of Three Dimensional Flow in a Pipe written by and published by . This book was released on 1982 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Modeling for Complex Fluids and Flows

Download or read book Mathematical Modeling for Complex Fluids and Flows written by Michel Deville and published by Springer Science & Business Media. This book was released on 2012-01-12 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.

Book Developments in the Simulation of Compressible Inviscid and Viscous Flow on Supercomputers

Download or read book Developments in the Simulation of Compressible Inviscid and Viscous Flow on Supercomputers written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-26 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: In anticipation of future supercomputers, finite difference codes are rapidly being extended to simulate three-dimensional compressible flow about complex configurations. Some of these developments are reviewed. The importance of computational flow visualization and diagnostic methods to three-dimensional flow simulation is also briefly discussed. Steger, J. L. and Buning, P. G. Ames Research Center NASA-TM-86674, A-85121, NAS 1.15:86674