EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simulation of Climate Change Effects on the Streamflow and Water Quality of Rural Watersheds

Download or read book Simulation of Climate Change Effects on the Streamflow and Water Quality of Rural Watersheds written by Michael Peter Hanratty and published by . This book was released on 1997 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Integrated Water Resources Management in a Changing Climate

Download or read book Integrated Water Resources Management in a Changing Climate written by JungJin Kim and published by . This book was released on 2017 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Land Use and Land Change (LULC) and climate variability are significant elements of the integrated water resources management to deal with water quality and quantity at the rural and urban interface. Adaptive strategies to develop sustainable water resources, therefore, are necessary to evaluate the water resources system in a changing global environment. In this dissertation, a series of analytical processes are implemented. First, gap filling processes are conducted by identifying a threshold of missing levels using daily precipitation series. The result indicates that about 15 % missing level of data is plausible to construct daily precipitation series for further hydrological analysis when the Gamma Distribution Function (GDF) is used as an estimation method. It is expected that such a finding can contribute to gap filling guidelines in the field, especially for water managers and hydrologists to take advantage of skillful estimates for missing daily precipitation data. Specifically, a gamma distribution function with statistical correlation (GSC) coupled with cluster analysis (CA) is used to estimate daily precipitation records and the result shows that GSC/CA outperformed other gap filling methods when rain and no-rain conditions are applied in the study area. Additionally, the dissertation identifies how Hydrological Simulation Program-Fortran (HSPF) model can improve performance depending on different sizes of watershed discretization levels within rainfall-runoff modeling settings. All simulations at different discretization levels above approximately 23% of the basin size resulted in satisfactory performances. However, the modeling performances are limited when the catchment size reaches below 8.18% of the basin size, regardless of automatic calibration efforts. The result indicates that basin discretization at finer scales does not necessarily improve HSPF simulation results with Next-Generation Radar (NEXRAD) inputs. Computer parallelism and spatio-temporal analysis is another avenue in this dissertation in the sense that the proposed method can advance hydrological simulations using HSPF along with different calibration scenarios. Thus, the result indicates that computer parallelism could save computation time up to 90%, while simulation improvement is achieved by 81%. This finding, therefore, will provide useful insights for hydrologists to design and set up their hydrological modeling exercises in a changing climate. As part of this dissertation, the evaluation of potential changes in water quality and quantity associated hydrologic changes in response to climate and LULC changes is also investigated. For example, HSPF model based on future LULC changes associated with climate scenarios was applied to generate climate-induced streamflow and to evaluate water quality in the Boise River Watershed (BRW). The result shows that the combined impact of LULC changes and climate variability on the BRW is inevitable, but seasonal variations in streamflow and water quality are primarily noticeable. This finding may provide useful information to develop sustainable water resources management when both water quality and quantity is an issue at the snow dominated watershed in a changing climate. Lastly, under the circumstance: increasing concerns on water quality associated with LULC changes and climate variability, identification of critical hot spots (CHSs) and the implementation of mitigation activities using low impact development (LID)/Best Management Practices (BMPs) is a critical exercise to improve water quality at the BRW. Based on preliminary environmental analysis using different methods, load per sub-area index (LPSAI) is selected as the most cost-effective method because it can reduce the average pollutant loads at the watershed outlet while minimizing cost.

Book Watershed Hydrology

    Book Details:
  • Author : Vijay P. Singh
  • Publisher : Allied Publishers
  • Release : 2003
  • ISBN : 9788177645477
  • Pages : 588 pages

Download or read book Watershed Hydrology written by Vijay P. Singh and published by Allied Publishers. This book was released on 2003 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulation of Climate change Effects on Streamflow  Lake Water Budgets  and Stream Temperature Using GSFLOW and SNTEMP  Trout Lake Watershed  Wisconsin

Download or read book Simulation of Climate change Effects on Streamflow Lake Water Budgets and Stream Temperature Using GSFLOW and SNTEMP Trout Lake Watershed Wisconsin written by R. J. Hunt and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Impact of Climate Change on Water Resources

Download or read book Impact of Climate Change on Water Resources written by Christina Anagnostopoulou and published by MDPI. This book was released on 2021-01-19 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.

Book Handbook of Climate Change Impacts on River Basin Management

Download or read book Handbook of Climate Change Impacts on River Basin Management written by Saeid Eslamian and published by CRC Press. This book was released on 2024-08-29 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate change not only involves rising temperatures but it can also alter the hydro-meteorological parameters of a region and the corresponding changes emerging in the various biotic or abiotic environmental features. One of the results of climate change has been the impact on the sediment yield and its transport. These changes have implications for various other environmental components, particularly soils, water bodies, water quality, land productivity, sedimentation processes, glacier dynamics, and risk management strategies to name a few. This volume provides an overview of the fundamental processes and impacts of climate change on river basin management and examines issues related to soil erosion, sedimentation, and contaminants, as well as rainfall-runoff modeling and flood mitigation strategies. It also includes coverage of climate change fundamentals as well as chapters on related global treaties and policies.

Book Extreme Hydrology and Climate Variability

Download or read book Extreme Hydrology and Climate Variability written by Assefa Melesse and published by Elsevier. This book was released on 2019-07-03 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation

Book Effect of Watershed Changes on Streamflow

Download or read book Effect of Watershed Changes on Streamflow written by W. L. Moore and published by . This book was released on 1969 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Effects of watershed changes: a continuing challenge;Effects of watershed changes on water quality;Potential of physical models for achievingbetter understanding and evaluation of watershed changes;A discussion of potential of physical models for achieving better understanding an evaluation of watershed changes; Analysis of watershed changes; Informational needs on changes in rural watershed and their relationship to planning activities; Land treatment in agricultural watershed hydrology research; Effects of conservation treatments on water yield; Application of continuous accounting techniques to evaluate the effects of small structures on mukewater Creek, Texas; A discussion of application of continuous accounting techniques to evaluate the effects of small structures on mukewater creek, Texas; Effects of small structures on peak flow; Effects of small structures on water yield in Texas; Effects of small structures on water yield in Texas; Field experiment on washita river; Pollution effects in rural watersheds; The nature of changes in urban watersheds and their importance in the decades ahead; The U.S. geological survey urban water program; Urban effects on water yield; Modeling the runoff characteristics of a urban watershed by means of an analog computer; Effects of urbanization on peak flows; Urban effects on the unit hydrograph; Experience with the evaluation of urban effect for drainage design; Urban effect of quality of streamflow.

Book Scenarios and Implications of Land Use and Climate Change on Water Quality in Mesoscale Agricultural Watersheds

Download or read book Scenarios and Implications of Land Use and Climate Change on Water Quality in Mesoscale Agricultural Watersheds written by Bano B Mehdi and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "A comparative study in two mesoscale, agricultural watersheds located in mid-latitude, developed regions (Altmühl River, Germany and in Pike River, Canada) investigated potential future land use change and climate change impacts on surface water quality. The two watersheds provided a unique opportunity to compare potential impacts of change in similar physical and climatological regions, yet under different political settings related to agricultural policies as well as water quality management and protection. The objectives of the research were to develop agricultural land use scenarios to apply to a hydrological model simultaneously with climate change simulations. This modelling framework allowed quantifying these combined impacts on streamflow, sediment loads, nitrate-nitrogen loads and concentrations, as well as total phosphorus loads and concentrations to the 2050 time horizon. The impacts of climate change were evaluated alone and then with land use change. Overall, the quality of surface water simulated in both watersheds will be deteriorated according to environmental standards set by the ministries by 2050 due to higher mean annual nutrient loads transported into the rivers. Climate change impacts were greater than land use change impacts; however land use change can have an important influence on water quality, depending on the magnitude of crop changes taking place. Field-level adaptation strategies in the Pike River were simulated to determine the extent of reducing the combined impacts of land use and climate change. The strategies were able to mitigate the combined impacts, and also to improve the quality of surface water compared to the in-stream nutrient concentrations in the reference simulation.In both watersheds, it was determined that the combined interaction between climate change and land use change in the hydrological model are non-linear. Examining the combined impacts are necessary to determine potential alterations in water quality in a basin since the direction and the magnitude are not predictable from the individual changes alone." --

Book Physically Based Modelling of the Impacts of Climate Change on Streamflow Regime

Download or read book Physically Based Modelling of the Impacts of Climate Change on Streamflow Regime written by Nazmus Shams Sazib and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the implications of climate change on streamflow regime is complex as changes in climate vary over space and time. However, a better understanding of the impact of climate change is required for identifying how stream ecosystems vulnerable to these changes, and ultimately to guide the development of robust strategies for reducing risk in the face of changing climatic conditions. Here I used physically based hydrologic modeling to improve understanding of how climate change may impact streamflow regimes and advance some of the cyberinfrastructure and GIS methodologies that support physically based hydrologic modeling by: (1) using a physically based model to examine the potential effects of climate change on ecologically relevant aspects of streamflow regime, (2) developing data services in support of input data preparation for physically based distributed hydrologic models, and (3) enhancing terrain analysis algorithms to support rapid watershed delineation over large area. TOPNET, a physically based hydrologic model was applied over eight watersheds across the U.S to assess the sensitivity and changes of the streamflow regime due to climate change. Distributed hydrologic models require diverse geospatial and time series inputs, the acquisition and preparation of which are labor intensive and difficult to reproduce. I developed web services to automate the input data preparation steps for a physically based distributed hydrological model to enable water scientist to spend less time processing input data. This input includes terrain analysis and watershed delineation over a large area. However, limitations of current terrain analysis tools are (1) some support only a limited set of specific raster and vector data formats, and (2) all that we know of require data to be in a projected coordinate system. I enhanced terrain analysis algorithms to extend their generality and support rapid, web-based watershed delineation services. Climate change studies help to improve the scientific foundation for conducting climate change impacts assessments, thus building the capacity of the water management community to understand and respond to climate change. Web-based data services and enhancements to terrain analysis algorithms to support rapid watershed delineation will impact a diverse community of researchers involved terrain analysis, hydrologic and environmental modeling.

Book Modeling the Effects of Climate Change Forecasts on Streamflow in the Nooksack River Basin

Download or read book Modeling the Effects of Climate Change Forecasts on Streamflow in the Nooksack River Basin written by Susan E. Dickerson and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2300 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a high relief, snow-dominated drainage basin such as the Nooksack River basin is strongly influenced by temperature and precipitation. Forecasts of future climate made by general circulation models (GCMs) predict increases in temperature and variable changes to precipitation in western Washington, which will affect streamflow, snowpack, and glaciers in the Nooksack River basin. Anticipating the response of the river to climate change is crucial for water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. I combined modeled climate forecasts and the Distributed-Hydrology-Soil-Vegetation Model (DHSVM) to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River, east of the confluence near Deming, Washington. The DHSVM is a physically based, spatially distributed hydrology model that simulates a water and energy balance at the pixel scale of a digital elevation model. I used recent meteorological and landcover data to calibrate and validate the DHSVM. Coarse-resolution GCM forecasts were downscaled to the Nooksack basin following the methods of previous regional studies (e.g., Palmer, 2007) for use as local-scale meteorological input to the calibrated DHSVM. Simulations of future streamflow and snowpack in the Nooksack River basin predict a range of magnitudes, which reflects the variable predictions of the climate change forecasts and local natural variability. Simulation results forecast increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. Modeling results for future peak flow events indicate an increase in both the frequency and magnitudes of floods, but uncertainties are high for modeling the absolute magnitudes of peak flows. These results are consistent with previous regional studies which document that temperature-related effects on precipitation and melting are driving changes to snow-melt dominated basins (e.g., Hamlet et al., 2005; Mote et al., 2005; Mote et al., 2008; Adam et al., 2009).

Book Climate Change and Land Use Cover Change Impacts on Watershed Hydrology  Nutrient Dynamics    a Case Study in Missisquoi River Watershed

Download or read book Climate Change and Land Use Cover Change Impacts on Watershed Hydrology Nutrient Dynamics a Case Study in Missisquoi River Watershed written by Linyuan Shang and published by . This book was released on 2019 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Watershed regulation of water, carbon and nutrient dynamics support food, drinking water and human development. Projected climate changes and land use/cover change (LUCC) have been identified as drivers of watershed nutrient and hydrological processes and are likely to happen jointly in the future decades. Studying climate change and LUCC impacts on watersheds' streamflow and nutrients dynamics is therefore essential for future watershed management. This research aimed to unveil how climate change and LUCC affect water and nutrient dynamics in the Missisquoi River watershed, Vermont. We used 12 scenarios of future climate data (2021 - 2050) generated by three GCMs (ccsm4, mri-cgcm3, and gfdl-esm2m) under four Representative Concentration Pathways (RCPs). For LUCC, we used three different scenarios generated by the Interactive Land Use Transition Agent-Based Model (ILUTABM). The three LUCC scenarios were Business As Usual (BAU), Prefer Forest (proForest), and Prefer Agriculture (proAg). New land use maps were generated every 10 years for the period of 2021 - 2050. Combining each climate change and LUCC scenario resulted in 36 scenarios that were used to drive Regional Hydro-Ecologic Simulation System (RHESSys) ecohydrological model. In chapter 3, we used RHESSys to study streamflow. We found climate was the main driver for streamflow because climate change directly controlled the system water input. For streamflow, climate change scenarios had larger impacts than LUCC, different LUCCs under the same climate change scenario had similar annual flow patterns. In chapter 4, we used RHESSys to study streamflow NO3-N and NH4-N load. Because fertilizer application is the major source for nitrogen export, LUCC had larger impacts; watersheds with more agricultural land had larger nitrogen loads. In chapter 5, we developed RHESSys-P by coupling the DayCent phosphorus module with RHESSys to study climate change and LUCC impacts on Dissolved Phosphorus (DP) load. RHESSys-P was calibrated with observed DP data for 2002 - 2004 and validated with data for 2009 - 2010. In both calibration and validation periods, simulated DP basically captured patterns of observed DP. In the validation period, the R2 of simulated vs observed DP was 0.788. Future projection results indicated BAU and proForest annual loads were around 4.0 x 104 kg under all climate change scenarios; proAg annual loads increased from around 4.0 x 104 kg in 2021 to 1.6 x 105 kg in 2050 under all climate change scenarios. The results showed LUCC was the dominant factor for dissolved phosphorus loading. Overall, our results suggest that, while climate drives streamflow, N and P fluxes are largely driven by land use and management decisions. To balance human development and environmental quality, BAU is a feasible future development strategy.

Book Modeling Impacts of Climate Change and Agricultural Management on Watershed Outputs in Midwestern USA

Download or read book Modeling Impacts of Climate Change and Agricultural Management on Watershed Outputs in Midwestern USA written by Awoke Dagnew Teshager and published by . This book was released on 2016 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of the SWAT model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the tool. In a standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover (LULC), soil, and slope, but located in different places within a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as LULC, soil, crop rotation and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for the Raccoon River watershed in Iowa for 2002 to 2010 and the Big Creek River watershed in Illinois for 2000 to 2003. SWAT was able to replicate annual, monthly and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner. The calibrated and validated SWAT model was then used to assess agricultural scenario and climate change impacts on watershed water quantity, quality, and crop yields. Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental, and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists modeling the combined impacts of agricultural scenarios and climate change on crop yields and watershed hydrology. Here, SWAT, was used to model the combined impacts of five agricultural scenarios and three climate scenarios downscaled using eight climate models. These scenarios were implemented in a well calibrated SWAT model for the Raccoon River watershed (RRW), IA. We run the scenarios for the historical baseline, early-century, mid-century, and late-century periods. Results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid and late 21st century. Finally, various agricultural best management practice (BMP) scenarios were evaluated for their efficiency in alleviating watershed water quality problems. The vast majority of the literature on efficiency assessment of BMPs in alleviating water quality problems base their scenarios analysis on identifying subbasin level simulation results. In the this study, we used spatially explicit HRUs, defined using ArcGIS-based pre-processing methodology, to identify Nitrate (NO3) and Total Suspended Solids (TSS) hotspots at the HRU/field level, and evaluate the efficiency of selected BMPs in a large watershed, RRW, using the SWAT model. Accordingly, analysis of fourteen management scenarios were performed based on systematic combinations of five agricultural BMPs (fertilizer/manure management, changing cropland to perennial grass, vegetative filter strips, cover crops and shallower tile drainage systems) aimed to reduce NO3 and TSS yields from targeted hotspot areas in the watershed at field level. Moreover, implications of climate change on management practices, and impacts of management practices on water availability and crop yield and total production were assessed. Results indicated that either implementation of multiple BMPs or conversion of an extensive area into perennial grass may be required to sufficiently reduce nitrate loads to meet the drinking water standard. Moreover, climate change may undermine the effectiveness of management practices, especially late in the 21 st century. The targeted approach used in this study resulted in slight decreases in watershed average crop yields, hence the reduction in total crop production is mainly due to conversion of croplands to perennial grass.

Book Modeling Hydrologic Responses to Forest Management and Climate Change in Contrasting Watersheds in the Southeastern United States

Download or read book Modeling Hydrologic Responses to Forest Management and Climate Change in Contrasting Watersheds in the Southeastern United States written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrologic pathways and processes vary greatly from the coastal plain to the mountainous upland across the southeastern United States due to large physiographic and climatic gradients. The coastal plain is generally a groundwater dominated system with a shallow water table, while the mountainous upland is hillslope controlled system. It was hypothesized that these two different regions have different hydrologic responses to forest management and climate change due to different conditions: topography, climate, soil, and vegetation. The hydrologic impacts of climate change and forest management practices are complex and nonlinear, and a model is an advanced tool for addressing such tasks. The objectives of this study were: 1) to evaluate the applicability of a physically-based, distributed hydrologic modeling system - MIKE SHE/MIKE 11 - in the southeastern United States; and 2) to use the MIKE SHE/MIKE 11 modeling system to examine the hydrologic processes and responses to forest management practices and climate change on the coastal plain and the mountainous upland in the southeastern United States. Four experimental watersheds, three wetlands on the coastal plain and one Appalachian mountainous upland, were selected. The model was first evaluated to determine if it could sufficiently describe the hydrological processes in these diverse watersheds in two contrasting regions. Next, the model was applied to simulate the hydrologic impacts of forest management and climate change at the four study sites, four simulation scenarios per site. These included the base line, clearcut, 2 & deg;C temperature increase, and 10% precipitation decrease scenarios. Water table level and streamflow amount were two responses used to evaluate the forest management and climate change impacts. This study indicated that forest management and climate change would have potential impacts on the wetland water table, especially during dry periods. The absolute magnitudes of streamflow reduction w.

Book Soil Components and Human Health

Download or read book Soil Components and Human Health written by Rolf Nieder and published by Springer. This book was released on 2018-01-10 with total page 907 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume highlights important links existing between soils and human health which up to now are not fully realized by the public. Soil materials may have deleterious, beneficial or no impacts on human health; therefore, understanding the complex relationships between diverse soil materials and human health will encourage creative cooperation between soil and environmental sciences and medicine. The topics covered in this book will be of immense value to a wide range of readers, including soil scientists, medical scientists and practitioners, nursing scientists and staff, toxicologists, ecologists, agronomists, geologists, geochemists, public health professionals, planners and several others.

Book Satellite Rainfall Applications for Surface Hydrology

Download or read book Satellite Rainfall Applications for Surface Hydrology written by Mekonnen Gebremichael and published by Springer Science & Business Media. This book was released on 2009-12-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions from a panel of researchers from a wide range of fields, the chapters of this book focus on evaluating the potential, utility and application of high resolution satellite precipitation products in relation to surface hydrology.