Download or read book Modern Electric Hybrid Electric and Fuel Cell Vehicles written by Mehrdad Ehsani and published by CRC Press. This book was released on 2018-02-02 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.
Download or read book Simulation and Optimization of a Fuel Cell Hybrid Vehicle written by Darren Brown and published by ProQuest. This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this research is to improve the design of a fuel cell battery hybrid vehicle through the use of an advanced vehicle powertrain simulator. The first part of this project involves the development of the simulation package from an existing MATLAB/Simulink based model. This model is modified and improved to more accurately simulate the real-world vehicle and also to allow for various parametric studies to be performed. The resulting simulation package is called Light, Fast, and Modifiable or LFM. Three different parametric studies are performed using the LFM simulation platform. The first involves vehicle design parameters. This experiment studies the effect of various vehicle parameters such as tire rolling resistance, vehicle mass, drag coefficient on vehicle performance. The second study involves hybrid control strategy parameters. The hybrid control strategy controls the flow of power between each of the power sources and is vital to proper vehicle performance. This experiment studies the effect of various scaling factors in the hybrid control strategy. The third parametric study involves the input drive cycle. A drive cycle is a speed vs. time data set that effectively "drives" the simulation. This experiment studies how different statistical quantities that describe a drive cycle (such as average speed, average acceleration, etc.) affect vehicle performance. Also using the LFM vehicle simulator, a new hybrid control strategy, called Drive Cycle Recognition (DCR), is developed and investigated. DCR involves classification of the current vehicle drive cycle (speed vs. time history) based on certain representative drive cycles. The identification is performed using the key statistical information explored in the drive cycle parametric study. It is shown that DCR can be used in a simulated environment to significantly improve upon the current strategy by addressing faults in the most sensitive parameters. Furthermore, a real world implementation of DCR on the University of Delaware Fuel Cell Bus shows that the current fuel cell configuration is undersized for the effective use of DCR. Finally, the LFM simulator is used to perform a Degree-of-Hybridization (DOH) analysis. This analysis involves experimenting with different balances between the power sources available in a hybrid vehicle. It is shown that an optimum balance exists for each driving style, but a significant compromise is needed to cover all driving styles the vehicle is likely to encounter.
Download or read book Modeling Control and Design Optimization of a Fuel Cell Hybrid Vehicle written by Minjoong Kim and published by . This book was released on 2007 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fuel Cell Modeling and Simulation written by Gholam Reza Molaeimanesh and published by Elsevier. This book was released on 2022-11-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel Cell Modeling and Simulation: From Micro-Scale to Macro-Scale provides a comprehensive guide to the numerical model and simulation of fuel cell systems and related devices, with easy-to-follow instructions to help optimize analysis, design and control. With a focus on commercialized PEM and solid-oxide fuel cells, the book provides decision-making tools for each stage of the modeling process, including required accuracy and available computational capacity. Readers are guided through the process of developing bespoke fuel cell models for their specific needs. This book provides a step-by-step guide to the fundamentals of fuel cell modeling that is ideal for students, researchers and industry engineers working with fuel cell systems, but it will also be a great repository of knowledge for those involved with electric vehicles, batteries and computational fluid dynamics. Offers step-by-step guidance on the simulation of PEMFC and SOFC Provides an appendix of source codes for modeling, simulation and optimization algorithms Addresses the fundamental thermodynamics and reaction kinetics of fuel cells, fuel cell electric vehicles (FCEVs) and fuel cell power plant chapters
Download or read book Proceedings of the FISITA 2012 World Automotive Congress written by SAE-China and published by Springer. This book was released on 2012-11-07 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 4: Future Automotive Powertrain (II) focuses on: •Advanced Battery Technology •Hydrogen Fuel Cell Vehicle •Charging Infrastructure and Smart Grid Technology •Demonstration of Electric Vehicles in Cities Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
Download or read book Vehicle Propulsion Systems written by Lino Guzzella and published by Springer Science & Business Media. This book was released on 2007-09-21 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors of this text have written a comprehensive introduction to the modeling and optimization problems encountered when designing new propulsion systems for passenger cars. It is intended for persons interested in the analysis and optimization of vehicle propulsion systems. Its focus is on the control-oriented mathematical description of the physical processes and on the model-based optimization of the system structure and of the supervisory control algorithms.
Download or read book Control of Fuel Cell Power Systems written by Jay T. Pukrushpan and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the latest research in the control of fuel cell technology, this book will contribute to the commercial viability of the technology. The authors’ background in automotive technology gives the work added authority as a vital element of future planning.
Download or read book Hybrid Electric Vehicles written by Simona Onori and published by Springer. This book was released on 2015-12-16 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.
Download or read book Hybrid Electric Vehicles written by Chris Mi and published by John Wiley & Sons. This book was released on 2017-11-29 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters Covers recent developments, breakthroughs, and technologies, including new drive topologies Explains HEV fundamentals and applications Offers a holistic perspective on vehicle electrification Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering.
Download or read book Advances in Hydrogen Production Storage and Distribution written by Adolfo Iulianelli and published by Elsevier. This book was released on 2014-07-16 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Hydrogen Production, Storage and Distribution reviews recent developments in this key component of the emerging "hydrogen economy," an energy infrastructure based on hydrogen. Since hydrogen can be produced without using fossil fuels, a move to such an economy has the potential to reduce greenhouse gas emissions and improve energy security. However, such a move also requires the advanced production, storage and usage techniques discussed in this book. Part one introduces the fundamentals of hydrogen production, storage, and distribution, including an overview of the development of the necessary infrastructure, an analysis of the potential environmental benefits, and a review of some important hydrogen production technologies in conventional, bio-based, and nuclear power plants. Part two focuses on hydrogen production from renewable resources, and includes chapters outlining the production of hydrogen through water electrolysis, photocatalysis, and bioengineered algae. Finally, part three covers hydrogen production using inorganic membrane reactors, the storage of hydrogen, fuel cell technology, and the potential of hydrogen as a fuel for transportation. Advances in Hydrogen Production, Storage and Distribution provides a detailed overview of the components and challenges of a hydrogen economy. This book is an invaluable resource for research and development professionals in the energy industry, as well as academics with an interest in this important subject. - Reviews developments and research in this dynamic area - Discusses the challenges of creating an infrastructure to store and distribute hydrogen - Reviews the production of hydrogen using electrolysis and photo-catalytic methods
Download or read book Vehicle Power Management written by Xi Zhang and published by Springer Science & Business Media. This book was released on 2011-08-12 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vehicle Power Management addresses the challenge of improving vehicle fuel economy and reducing emissions without sacrificing vehicle performance, reliability and durability. It opens with the definition, objectives, and current research issues of vehicle power management, before moving on to a detailed introduction to the modeling of vehicle devices and components involved in the vehicle power management system, which has been proven to be the most cost-effective and efficient method for initial-phase vehicle research and design. Specific vehicle power management algorithms and strategies, including the analytical approach, optimal control, intelligent system approaches and wavelet technology, are derived and analyzed for realistic applications. Vehicle Power Management also gives a detailed description of several key technologies in the design phases of hybrid electric vehicles containing battery management systems, component optimization, hardware-in-the-loop and software-in-the-loop. Vehicle Power Management provides graduate and upper level undergraduate students, engineers, and researchers in both academia and the automotive industry, with a clear understanding of the concepts, methodologies, and prospects of vehicle power management.
Download or read book Hybrid Systems Optimal Control and Hybrid Vehicles written by Thomas J. Böhme and published by Springer. This book was released on 2017-02-01 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering problems of growing complexity in the field of hybrid vehicles. Important topics of real relevance rarely found in text books and research publications—switching costs, sensitivity of discrete decisions and there impact on fuel savings, etc.—are discussed and supported with practical applications. These demonstrate the contribution of optimal hybrid control in predictive energy management, advanced powertrain calibration, and the optimization of vehicle configuration with respect to fuel economy, lowest emissions and smoothest drivability. Numerical issues such as computing resources, simplifications and stability are treated to enable readers to assess such complex systems. To help industrial engineers and managers with project decision-making, solutions for many important problems in hybrid vehicle control are provided in terms of requirements, benefits and risks.
Download or read book Electric Vehicles Design Modelling and Simulation written by Nicolae Tudoroiu and published by BoD – Books on Demand. This book was released on 2023-12-13 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clean and efficient transportation in countries around the world is only possible if governments and scientists focus on stimulating and supporting the electric vehicle industry by developing and deploying the most advanced Li-ion battery technologies. Recently, several improvements have been made in the direction of operational safety, the elimination of explosion hazards, and the mitigation of chemical toxicity. The state of charge of an electric vehicle battery is an essential internal parameter that plays a vital role in utilizing the battery’s energy efficiency, operating safely in various realistic conditions and environments, and extending the battery’s life. Also, automated systems are integrated into the architecture of electrical vehicles, allowing for technology, machinery, or systems to perform tasks or processes with minimal human intervention. Automation in electric vehicles involves the integration of advanced technologies to enhance the driving experience, improve safety, optimize energy efficiency, and facilitate the transition to sustainable transportation. The key aspects of automation in electric vehicles are advanced driver assistance, self-driving capabilities, battery and energy management, and safety and collision avoidance. This book provides a comprehensive overview of electric and hybrid electric vehicles, exploring their design, the modeling of Li-ion battery management systems, state-of-charge estimation algorithms, and the most used electric motors. It also discusses new trends in electric vehicle automation as well as different control strategies.
Download or read book Modern Electric Hybrid Electric and Fuel Cell Vehicles written by Mehrdad Ehsani and published by CRC Press. This book was released on 2018-02-02 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.
Download or read book Fuel Cell Hybrid EVs written by Ronald K Jurgen and published by SAE International. This book was released on 2010-11-29 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: With production and planning for new electric vehicles gaining momentum worldwide, this book – the fifth in a series of five volumes on this subject – provides engineers and researchers with perspectives on the most current and innovative developments regarding electric and hybrid-electric vehicle technology, design considerations, and components. This book features 14 SAE technical papers, published from 2008 through 2010, that look at innovative engineering approaches to meeting the major technological challenges associated with fuel cells. Topics covered include: Advances in powertrain systems for fuel cell vehicles Diagnostic design processes for developmental vehicles Application of two fuel cells in hybrid electric vehicles Research and design of a centrifugal compressor for fuel cell turbocharger The future of fuel cell hybrid EVs
Download or read book Fuel Cell Renewable Hybrid Power Systems written by Nicu Bizon and published by MDPI. This book was released on 2021-09-02 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate change is becoming visible today, and so this book—through including innovative solutions and experimental research as well as state-of-the-art studies in challenging areas related to sustainable energy development based on hybrid energy systems that combine renewable energy systems with fuel cells—represents a useful resource for researchers in these fields. In this context, hydrogen fuel cell technology is one of the alternative solutions for the development of future clean energy systems. As this book presents the latest solutions, readers working in research areas related to the above are invited to read it.
Download or read book Modeling and Control of Hybrid Propulsion System for Ground Vehicles written by Yuan Zou and published by Springer. This book was released on 2018-07-02 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the systematic design of architectures, parameters and control of typical hybrid propulsion systems for wheeled and tracked vehicles based on a combination of theoretical research and engineering practice. Adopting a mechatronic system dynamics perspective, principles and methods from the fields of optimal control and system optimization are applied in order to analyze the hybrid propulsion configuration and controller design. Case investigations for typical hybrid propulsion systems of wheeled and tracked ground vehicles are also provided.