EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simulation and Design of 4H SiC Schottky Diode and Si IGBT

Download or read book Simulation and Design of 4H SiC Schottky Diode and Si IGBT written by 黃浩宸 and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 4H SiC Integrated Circuits for High Temperature and Harsh Environment Applications

Download or read book 4H SiC Integrated Circuits for High Temperature and Harsh Environment Applications written by Mihaela Alexandru and published by . This book was released on 2014 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide (SiC) has received a special attention in the last decades thanks to its superior electrical, mechanical and chemical proprieties. SiC is mostly used for applications where Silicon is limited, becoming a proper material for both unipolar and bipolar power device able to work under high power, high frequency and high temperature conditions. Aside from the outstanding theoretical and practical advantages still to be proved in SiC devices, the need for more accurate models for the design and optimization of these devices, along with the development of integrated circuits (ICs) on SiC is indispensable for the further success of modern power electronics. The design and development of SiC ICs has become a necessity since the high temperature operation of ICs is expected to enable important improvements in aerospace, automotive, energy production and other industrial systems. Due to the last impressive progresses in the manufacturing of high quality SiC substrates, the possibility of developing ICs applications is now feasible. SiC unipolar transistors, such as JFETs and MESFETs show a promising potential for digital ICs operating at high temperature and in harsh environments. The reported ICs on SiC have been realized so far with either a small number of elements, or with a low integration density. Therefore, this work demonstrates that by means of our SiC MESFET technology, multi-stage digital ICs fabrication containing a large number of 4H-SiC devices is feasible, accomplishing some of the most important ICs requirements. The ultimate objective is the development of SiC digital building blocks by transferring the Si CMOS topologies, hence demonstrating that the ICs SiC technology can be an important competitor of the Si ICs technology especially in application fields in which high temperature, high switching speed and harsh environment operations are required. The study starts with the current normally-on SiC MESFET CNM complete analysis of an already fabricated MESFET. It continues with the modeling and fabrication of a new planar-MESFET structure together with new epitaxial resistors specially suited for high temperature and high integration density. A novel device isolation technique never used on SiC before is approached. A fabrication process flow with three metal levels fully compatible with the CMOS technology is defined. An exhaustive experimental characterization at room and high temperature (300oC) and Spice parameter extractions for both structures are performed. In order to design digital ICs on SiC with the previously developed devices, the current available topologies for normally-on transistors are discussed. The circuits design using Spice modeling, the process technology, the fabrication and the testing of the 4H-SiC MESFET elementary logic gates library at high temperature and high frequencies are performed. The MESFET logic gates behavior up to 300oC is analyzed. Finally, this library has allowed us implementing complex multi-stage logic circuits with three metal levels and a process flow fully compatible with a CMOS technology. This study demonstrates that the development of important SiC digital blocks by transferring CMOS topologies (such as Master Slave Data Flip-Flop and Data-Reset Flip-Flop) is successfully achieved. Hence, demonstrating that our 4H-SiC MESFET technology enables the fabrication of mixed signal ICs capable to operate at high temperature (300oC) and high frequencies (300kHz). We consider this study an important step ahead regarding the future ICs developments on SiC. Finally, experimental irradiations were performed on W-Schotthy diodes and mesa-MESFET devices (with the same Schottky gate than the planar SiC MESFET) in order to study their radiation hardness stability. The good radiation endurance of SiC Schottky-gate devices is proven. It is expected that the new developed devices with the same W-Schottky gate, to have a similar behavior in radiation rich environments.

Book Modeling And Electrothermal Simulation Of Sic Power Devices  Using Silvaco   Atlas

Download or read book Modeling And Electrothermal Simulation Of Sic Power Devices Using Silvaco Atlas written by Bejoy N Pushpakaran and published by World Scientific. This book was released on 2019-03-22 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this book is to provide a sound understanding of wide bandgap Silicon Carbide (SiC) power semiconductor device simulation using Silvaco© ATLAS Technology Computer Aided Design (TCAD) software. Physics-based TCAD modeling of SiC power devices can be extremely challenging due to the wide bandgap of the semiconductor material. The material presented in this book aims to shorten the learning curve required to start successful SiC device simulation by providing a detailed explanation of simulation code and the impact of various modeling and simulation parameters on the simulation results. Non-isothermal simulation to predict heat dissipation and lattice temperature rise in a SiC device structure under switching condition has been explained in detail. Key pointers including runtime error messages, code debugging, implications of using certain models and parameter values, and other factors beneficial to device simulation are provided based on the authors' experience while simulating SiC device structures. This book is useful for students, researchers, and semiconductor professionals working in the area of SiC semiconductor technology. Readers will be provided with the source code of several fully functional simulation programs that illustrate the use of Silvaco© ATLAS to simulate SiC power device structure, as well as supplementary material for download.Related Link(s)

Book Design and Simulation of High Voltage 4H Silicon Carbide Power Devices

Download or read book Design and Simulation of High Voltage 4H Silicon Carbide Power Devices written by Xueqing Li and published by . This book was released on 2005 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Power Electronics Handbook

Download or read book Power Electronics Handbook written by Muhammad H. Rashid and published by Elsevier. This book was released on 2023-09-27 with total page 1472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power Electronics Handbook, Fifth Edition delivers an expert guide to power electronics and their applications. The book examines the foundations of power electronics, power semiconductor devices, and power converters, before reviewing a constellation of modern applications. Comprehensively updated throughout, this new edition features new sections addressing current practices for renewable energy storage, transmission, integration, and operation, as well as smart-grid security, intelligent energy, artificial intelligence, and machine learning applications applied to power electronics, and autonomous and electric vehicles. This handbook is aimed at practitioners and researchers undertaking projects requiring specialist design, analysis, installation, commissioning, and maintenance services. - Provides a fully comprehensive work addressing each aspect of power electronics in painstaking depth - Delivers a methodical technical presentation in over 1500 pages - Includes 50+ contributions prepared by leading experts - Offers practical support and guidance with detailed examples and applications for lab and field experimentation - Includes new technical sections on smart-grid security and intelligent energy, artificial intelligence, and machine learning applications applied to power electronics and autonomous and electric vehicles - Features new chapter level templates and a narrative progression to facilitate understanding

Book SiC Materials and Devices

Download or read book SiC Materials and Devices written by and published by Academic Press. This book was released on 1998-07-02 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume addresses the subject of materials science, specifically the materials aspects, device applications, and fabricating technology of SiC.

Book SiC Schottky Diodes and Polyphase Buck Converters

Download or read book SiC Schottky Diodes and Polyphase Buck Converters written by Veda Prakash N. Galigekere and published by . This book was released on 2007 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: The turn-on characteristics of a SiC Schottky diode are analyzed theoretically, by simulation, and by experiment. The static characteristics of SiC Schottky diodes and Si junction diodes are analyzed for normal and high temperatures. The effects of diffusion capacitance and junction capacitance on the turn-off transition of SiC Schottky diode have been analyzed theoretically. The turn-off transition of a SiC Schottky barrier diode is analyzed by modeling the metal-semiconductor junction capacitance considering the linear and the non-linear effects. Behavior of the linear and the non-linear metal-semiconductor junction capacitance models are evaluated exper- imentally. The performance of SiC Schottky diodes is compared to the performance of similarly rated Si junction diodes. The effect of diode reverse-recovery current on the primary switch of a PFC boost converter is analyzed by the aid of PSPICE simulations. A 250 W, PFC boost con- verter is designed and simulated. In the 250 W PFC boost converter, the perfor- mance of SiC Schottky diode and similarly rated Si junction diodes are evaluated. The PSPICE simulation models of a SiC Schottky diode and two Si junction diodes are compared and some important parameters are discussed and their effect on the turn-off transition of the diodes are presented. The principle and advantages of polyphase operation of buck converters is ana- lyzed. The design equations for a two-phase buck converter operating in CCM are derived. A two-phase 6 V/120 W (PWM) buck converter is designed and simulated using PSPICE. The design equations are verified by PSPICE simulation results.

Book Simulation of Silicon Carbide Schottky Diode  SiC

Download or read book Simulation of Silicon Carbide Schottky Diode SiC written by Deepak Yadav and published by . This book was released on 2011 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design and Fabrication of 4H Silicon Carbide Gate Turn off Thyristors

Download or read book Design and Fabrication of 4H Silicon Carbide Gate Turn off Thyristors written by Lei Lin and published by . This book was released on 2013 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wide Bandgap Semiconductors for Power Electronics

Download or read book Wide Bandgap Semiconductors for Power Electronics written by Peter Wellmann and published by John Wiley & Sons. This book was released on 2022-01-10 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductors for Power Electronic A guide to the field of wide bandgap semiconductor technology Wide Bandgap Semiconductors for Power Electronics is a comprehensive and authoritative guide to wide bandgap materials silicon carbide, gallium nitride, diamond and gallium(III) oxide. With contributions from an international panel of experts, the book offers detailed coverage of the growth of these materials, their characterization, and how they are used in a variety of power electronics devices such as transistors and diodes and in the areas of quantum information and hybrid electric vehicles. The book is filled with the most recent developments in the burgeoning field of wide bandgap semiconductor technology and includes information from cutting-edge semiconductor companies as well as material from leading universities and research institutions. By taking both scholarly and industrial perspectives, the book is designed to be a useful resource for scientists, academics, and corporate researchers and developers. This important book: Presents a review of wide bandgap materials and recent developments Links the high potential of wide bandgap semiconductors with the technological implementation capabilities Offers a unique combination of academic and industrial perspectives Meets the demand for a resource that addresses wide bandgap materials in a comprehensive manner Written for materials scientists, semiconductor physicists, electrical engineers, Wide Bandgap Semiconductors for Power Electronics provides a state of the art guide to the technology and application of SiC and related wide bandgap materials.

Book Design  Characterization  Modeling and Analysis of High Voltage Silicon Carbide Power Devices

Download or read book Design Characterization Modeling and Analysis of High Voltage Silicon Carbide Power Devices written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This research focuses on the design, characterization, modeling and analysis of high voltage Silicon Carbide (SiC) metal-oxide-semiconductor field effect transistors (MOSFET), insulated gate bipolar transistors (IGBT) and emitter turn-off thyristors (ETO) to satisfy the stringent requirements of advanced power electronic systems. The loss information, frequency capability and switching ruggedness of these 10-kV SiC power devices are studied extensively in order to provide their application prospects in solid-state transformers (SST). Among 10-kV SiC power devices, SiC MOSFETs are of the greatest interest due to their lower specific on-resistance compared to silicon MOSFETs, and their inherently fast switching speed due to their majority carrier conduction mechanism. Therefore, 10-kV SiC MOSFETs are studied first in this dissertation. The characterization, modeling and analysis of 10-kV SiC MOSFETs were investigated extensively. The low losses and high switching frequency of 10-kV SiC MOSFETs were demonstrated in characterization study and a 4-kV 4 kW boost converter. The on-resistance of SiC MOSFETs increases rapidly with increased junction temperature and blocking voltage. This makes their conduction losses possibly unacceptable for applications where high DC supply voltages (more than 10-kV) and high temperature operation are used. This warrants the development of SiC bipolar devices (IGBTs and thyristors) to achieve smaller conduction losses due to the conductivity modulation of their thick drift layers, especially at elevated temperatures. Therefore, design, characterization and optimization of 10-kV SiC IGBT and ETO were dicussed. A 4H-SiC p-channel IGBT with improved conduction characteristics was developed and characterized experimentally as well as analyzed theoretically by numerical simulations. The device exhibited a differential on-resistance of 26 mOhm.cm^2 at a collector current density of 100 A/cm^2 at room temperature. An the SiC IGBT showed a turn-of.

Book Silicon Carbide and Related Materials 2004

Download or read book Silicon Carbide and Related Materials 2004 written by Roberta Nipoti and published by . This book was released on 2005 with total page 1134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide (SiC), Gallium Nitride (GaN) and Diamond are examples of wide-bandgap semiconductors having chemical, electrical and optical properties which make them very attractive for the fabrication of high-power and high-frequency electronic devices, as well as of light-emitters and sensors which have to operate under harsh conditions. The book comprises the proceedings of the 5th edition of the European Conference on Silicon Carbide and Related Materials, held from the 31st August to the 4th September 2004 in Bologna, Italy. This conference series here continued its tradition of being the main European forum for exchanging results, and discussing progress, between those university and industry researchers who are most active in the fields of SiC and related materials. Attendees at the conference highlighted the progress made in material growth technology, characterization of material properties and technological processing for electronic applications. Many electronics devices were presented: including high-voltage, high power-density and high-temperature components; as well as microwave components. Radiation-hard sensors were also presented.These proceedings fully document the latest experimental and theoretical understanding of the growth of bulk and epitaxial layers, the properties of the resultant materials, the development of suitable processes and of electronic devices that can best exploit and benefit from the outstanding physical properties that are offered by wide-bandgap materials.

Book Fundamentals of Silicon Carbide Technology

Download or read book Fundamentals of Silicon Carbide Technology written by Tsunenobu Kimoto and published by John Wiley & Sons. This book was released on 2014-11-24 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Book Silicon Carbide Power Devices

Download or read book Silicon Carbide Power Devices written by B. Jayant Baliga and published by World Scientific. This book was released on 2006-01-05 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices. Sample Chapter(s). Chapter 1: Introduction (72 KB). Contents: Material Properties and Technology; Breakdown Voltage; PiN Rectifiers; Schottky Rectifiers; Shielded Schottky Rectifiers; Metal-Semiconductor Field Effect Transistors; The Baliga-Pair Configuration; Planar Power MOSFETs; Shielded Planar MOSFETs; Trench-Gate Power MOSFETs; Shielded Trendch-Gate MOSFETs; Charge Coupled Structures; Integral Diodes; Lateral High Voltage FETs; Synopsis. Readership: For practising engineers working on power devices, and as a supplementary textbook for a graduate level course on power devices.

Book Advanced Silicon Carbide Devices and Processing

Download or read book Advanced Silicon Carbide Devices and Processing written by Stephen Saddow and published by BoD – Books on Demand. This book was released on 2015-09-17 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the production of the first commercially available blue LED in the late 1980s, silicon carbide technology has grown into a billion-dollar industry world-wide in the area of solid-state lighting and power electronics. With this in mind we organized this book to bring to the attention of those well versed in SiC technology some new developments in the field with a particular emphasis on particularly promising technologies such as SiC-based solar cells and optoelectronics. We have balanced this with the more traditional subjects such as power electronics and some new developments in the improvement of the MOS system for SiC MOSFETS. Given the importance of advanced microsystems and sensors based on SiC, we also included a review on 3C-SiC for both microsystem and electronic applications.

Book 1998 High Temperature Electronic Materials  Devices and Sensors Conference   February 22 27  1998  Bahia Hotel  San Diego  California  USA

Download or read book 1998 High Temperature Electronic Materials Devices and Sensors Conference February 22 27 1998 Bahia Hotel San Diego California USA written by Ilan Golecki and published by . This book was released on 1998 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book IGBT Modules

Download or read book IGBT Modules written by Andreas Volke and published by . This book was released on 2012 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: