EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanowire Field Effect Transistors  Principles and Applications

Download or read book Nanowire Field Effect Transistors Principles and Applications written by Dae Mann Kim and published by Springer Science & Business Media. This book was released on 2013-10-23 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

Book Towards Silicon Nanowire Field effect Transistors

Download or read book Towards Silicon Nanowire Field effect Transistors written by Martin Enderlein and published by . This book was released on 2009* with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Nanowire Transistors

Download or read book Silicon Nanowire Transistors written by Ahmet Bindal and published by Springer. This book was released on 2016-02-23 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI.

Book Development of Silicon Nanowire Field Effect Transistors

Download or read book Development of Silicon Nanowire Field Effect Transistors written by Prathyusha Nukala and published by . This book was released on 2011 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanowire Field Effect Transistor  FET

Download or read book Nanowire Field Effect Transistor FET written by Antonio García-Loureiro and published by . This book was released on 2021 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.

Book Sensing with Silicon Nanowire Field effect Transistors

Download or read book Sensing with Silicon Nanowire Field effect Transistors written by Oren S. Knopfmacher and published by . This book was released on 2011 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Nanowire Field Effect Transistors

Download or read book Silicon Nanowire Field Effect Transistors written by Oren Shirak and published by . This book was released on 2008 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Nanowire Field effect Transistors for Sensing Applications

Download or read book Silicon Nanowire Field effect Transistors for Sensing Applications written by Alexey Tarasov and published by . This book was released on 2012 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book GAA Silicon Nanowire Field Effect Transistor   A Compact Model

Download or read book GAA Silicon Nanowire Field Effect Transistor A Compact Model written by Mayank Chakraverty and published by . This book was released on 2014-09-12 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding Silicon Nanowire Field effect Transistors for Biochemical Sensing

Download or read book Understanding Silicon Nanowire Field effect Transistors for Biochemical Sensing written by Ralph Stoop and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanowires

Download or read book Nanowires written by Anqi Zhang and published by Springer. This book was released on 2016-07-26 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive summary of nanowire research in the past decade, from the nanowire synthesis, characterization, assembly, to the device applications. In particular, the developments of complex/modulated nanowire structures, the assembly of hierarchical nanowire arrays, and the applications in the fields of nanoelectronics, nanophotonics, quantum devices, nano-enabled energy, and nano-bio interfaces, are focused. Moreover, novel nanowire building blocks for the future/emerging nanoscience and nanotechnology are also discussed.Semiconducting nanowires represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, morphology, structure, doping and assembly, as well as incorporation with other materials, offer a variety of nanoscale building blocks with unique properties.

Book A Simulation Study of Silicon Nanowire Field Effect Transistors  FETs

Download or read book A Simulation Study of Silicon Nanowire Field Effect Transistors FETs written by and published by . This book was released on 2007 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract Silicon planar MOSFETs are approaching their scaling limits. New device designs are being explored to replace the existing planar technology. Among the possible new device designs are Double Gate (DG) FETs, FinFETs, Tri-Gate FETs and Omega- Gate FETs. The Silicon Nanowire Gate All Around (GAA) FET stands out as one of the most promising FET designs due to its maximum gate effect in controlling the short channel effects. Recent developments such as synthesis of highly ordered nanowires and fabrication of nanowires as small as 1nm in diameter have illustrated the progress possible in silicon nanowire technology In this study we have explored the silicon nanowire FET as a possible candidate to replace the currently planar MOSFETs. In this thesis we investigated the silicon nanowire FET device and compared its performance with that of a double gate (DG) FET. The software used for the study assumed quantum-ballistic transport (NanoWire), which was developed at Purdue University. Initially, we presented a comparison of Nanowire FET with DG FET with for devices with same physical parameters. It was seen that superior subthreshold characteristics are exhibited by a silicon nanowire FET. We also conducted an optimization study for the 25 nm node from the ITRS report. The final device was optimized for both High Performance and Low Operating Power applications. A further study on future technology nodes down to the 14 nm node was performed which revealed short channel effects becomes significant at gate lengths ~ 5 nm even for a silicon nanowire device. Finally, a process variation study was conducted in comparison with a FinFET device. It was concluded that a silicon nanowire FET shows less sensitivity to process variation except it has higher sensitivity in variation with the diameter at less than ~4 nm than for FinFET where significant quantum effects set in. Variation with the gate length was found to be much less sensitive for the silicon nanowire FET because of its superior gate control characteristics.

Book Nanowire Transistors

    Book Details:
  • Author : Jean-Pierre Colinge
  • Publisher : Cambridge University Press
  • Release : 2016-04-21
  • ISBN : 1107052408
  • Pages : 269 pages

Download or read book Nanowire Transistors written by Jean-Pierre Colinge and published by Cambridge University Press. This book was released on 2016-04-21 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained and up-to-date account of the current developments in the physics and technology of nanowire semiconductor devices.

Book Label Free Biosensing

    Book Details:
  • Author : Michael J. Schöning
  • Publisher : Springer
  • Release : 2018-07-20
  • ISBN : 3319752200
  • Pages : 485 pages

Download or read book Label Free Biosensing written by Michael J. Schöning and published by Springer. This book was released on 2018-07-20 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume summarizes the state-of-the-art technologies, key advances and future trends in the field of label-free biosensing. It provides detailed insights into the different types of solid-state, label-free biosensors, their underlying transducer principles, advanced materials utilized, device-fabrication techniques and various applications. The book offers graduate students, academic researchers, and industry professionals a comprehensive source of information on all facets of label-free biosensing and the future trends in this flourishing field. Highlights of the subjects covered include label-free biosensing with: · semiconductor field-effect devices such as nanomaterial-modified capacitive electrolyte-insulator-semiconductor structures, silicon nanowire transistors, III-nitride semiconductor devices and light-addressable potentiometric sensors · impedimetric biosensors using planar and 3D electrodes · nanocavity and solid-state nanopore devices · carbon nanotube and graphene/graphene oxide biosensors · electrochemical biosensors using molecularly imprinted polymers · biomimetic sensors based on acoustic signal transduction · enzyme logic systems and digital biosensors based on the biocomputing concept · heat-transfer as a novel transducer principle · ultrasensitive surface plasmon resonance biosensors · magnetic biosensors and magnetic imaging devices

Book Fabrication and Testing of Silicon Nanowire Field Effect Transistors for Sensing Applications

Download or read book Fabrication and Testing of Silicon Nanowire Field Effect Transistors for Sensing Applications written by Charalampos Papakonstantinopoulos and published by . This book was released on 2016 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Study of Silicon Nanowire Field Effect Transistor for Analog and Digital Biosensing

Download or read book Study of Silicon Nanowire Field Effect Transistor for Analog and Digital Biosensing written by Pengyuan Zang and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The advancement of semiconductor technology has popularized the low power, economical and small form-factor solid state devices, such as those highly integrated and interconnected as the fundamental infrastructure for the internet of things (IoT). Due to its CMOS-compatibility and electrical interface, the biosensor utilizing field effect transistor (FET) as transducer has become the perfect candidate to interface directly with the chemical and biological properties of the physical world. Especially, nanowire (NW) FET biosensor has received great attention as a highly sensitive biosensing platform, benefiting from its increased surface-to-volume ratio. In this work, several challenges and key aspects of existing NW FET biosensor were studied, and solutions were proposed to address these problems. For example, the hydrolytic stability of the surface sensing element was evaluated and improved by a hydrolysis process, which led to a significant increase in the overall biosensor performance. Another challenge is the noise in the electric potential of the sensing solutions. A secondary reference electrode was introduced in the biosensing system, and its potential was used to subtract the noise from the measured sensor output. Compared to a reference FET, this approach greatly reduced the system complexity and requirement, yet still improved the limit of detection (LOD) by 50 – 70%. This work also involved careful investigation into the analyte sensitivity, which can be considerably affected by the charge buffering effect from the surface hydroxyl groups. Analytical studies and numerical simulations were carried out, revealing that both low pH sensitivity and large analyte buffer capacity are required to achieve a reasonable analyte sensitivity. The most significant portion of this work was the experimental demonstration of the digital biosensing concept with single serpentine NW FET biosensor. The majority of existing FET biosensors utilized the device as an analog transducer, which measures the captured analyte density to generate an output, and suffers from various noise factors, especially the nonspecific changes of the sensing solutions than cannot be reduced by averaging. Digital biosensor no longer depends on the amplitude of the sensor output and is therefore better immune from these noise factors. Instead, the individual binding event of single analyte is counted and analyzed statistically to determine the analyte concentration. The single serpentine NW FET is the ideal device design to achieve digital biosensing. It maintains the low noise level with the equivalently long channel, yet achieves a small footprint enough for binding of only a single analyte. The binding of analyte to multiple segments of the NW results in both higher sensitivity and binding avidity. The small footprint also enables high integration density of the individual digital biosensors into an array format, which is a responsive, highly sensitive, and cost-effective future biosensing platform.