EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book SET NANOPARTICLES AND THE IMMUNE SYSTEM

Download or read book SET NANOPARTICLES AND THE IMMUNE SYSTEM written by SHYAMASREE. GHOSH and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Human Immune System

    Book Details:
  • Author : Shyamasree Ghosh
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2022-02-21
  • ISBN : 3110655853
  • Pages : 151 pages

Download or read book Human Immune System written by Shyamasree Ghosh and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-02-21 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fast development in the field of nanotechnology has led to a high variety of nanoparticles. Nanoparticles find importance in every sphere of human lives and more so in the recent years have tremendous applications in the sector of biomedical clinical medicine as diagnostic, prognostic and imaging tools. Their risk to human and animal life as well as to the environment is still unclear. Therefore, the study of the impact of nanoparticles on human and animal life is important. Volume I highlights the impact of nanoparticles on the human immune system. While discussing the basic biology of the immune system, this book highlights the downstream effect of nanoparticles on the human immune system. Research studies on the development of better and more effective nanoparticles with more precise and accurate effects and with toxic minimal side effects are discussed in the book. Both volumes are also included in a set ISBN 978-3-11-065666-4.

Book Nanoparticles and the Immune System

Download or read book Nanoparticles and the Immune System written by Shyamasree Ghosh and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Interaction of Nanomaterials With the Immune System  Role in Nanosafety and Nanomedicine

Download or read book Interaction of Nanomaterials With the Immune System Role in Nanosafety and Nanomedicine written by Paola Italiani and published by Frontiers Media SA. This book was released on 2018-04-10 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immune system has the double role of maintaining tissue integrity and homeostasis and of protecting the organism from possible dangers, from invading pathogens to environmentally-borne dangerous chemicals. New chemicals recognisable by the immune system are engineered nanomaterials/ nanoparticles, new agents in our environment that are becoming common due to their presence in many products, from constructions and building material (e.g., solar cells, pigments and paints, tilesand masonry materials) to daily products (e.g., food packaging, cosmetics, and cigarettes). Human beings can be accidentally exposed to engineered nanomaterials when these are released from products containing them or during production in workplaces. Furthermore, intentional exposure occurs in medicine, as engineered nanoparticles are used as tools for improving delivery of drugs and vaccines, vaccine adjuvants and contrast agents in therapeutic, preventive and diagnostic strategies. Nanoparticles that come in contact with the immune system after unintentional exposure need to be eliminated from the organism as they represent a potential threat. In this case, however, due to their peculiar characteristics of size, shape, surface charge and persistence, nanoparticles may elicit undesirable reactions and have detrimental effects on the immune system, such as cytotoxicity, inflammation, anaphylaxis, immunosuppression. Conversely, nanomedicines need to escape immune recognition/elimination and must persist in the organism long enough for reaching their target and exerting their beneficial effects. Immune cells and molecules at the body surface (airway and digestive mucosae, skin) are the first that come in contact with nanomaterials upon accidental exposure, while immune effectors in blood are those that more easily come in contact with nanomedical products. Thus, evaluating the interaction of the immune system with nanoparticles/nanomaterials is a topic of key importance both in nanotoxicology and in nanomedicine. Immuno-nanosafety studies consider both accidental exposure to nanoparticles, which may occur by skin contact, ingestion or inhalation (at doses and with a frequency that are not known), and medical exposure, which takes place with a defined administration schedule (route, dose, frequency). Many studies focus on the interaction between the immune system and nanoparticles that, for medical purposes, have been specifically modified to stimulate immunity or to avoid immune recognition, as in the case of vaccine carriers/adjuvants or drug delivery systems, respectively. The aims of this Research Topic is to provide an overview of recent strategies: 1.for assessing the immunosafety of engineered nanomaterials/nanoparticles, in particular in terms of activation of inflammatory responses, such as complement activation and allergic reactions, based on the nanomaterial intrinsic characteristics and on the possible carry-over of bioactive contaminants such as LPS. Production of new nanoparticles taking into account their effects on immune responses, in order to avoid undesirable effects on one hand, and to design particles with desirable effects for medical applications on the other hand; 2.for designing more effective nanomedicines by either avoiding or exploiting their interaction with the immune systems, with particular focus on cancer diagnosis and therapy, and vaccination. This collection of articles gives a comprehensive view of the state-of-the-art of the interaction of nanoparticles with the immune system from the two perspectives of safety and medical use, and aims at providing immunologists with the relevant knowledge for designing improved strategies for immunologically safe nanomaterial applications.

Book Interaction of Nanomaterials with the Immune System  Role in Nanosafety and Nanomedicinenanomedicine

Download or read book Interaction of Nanomaterials with the Immune System Role in Nanosafety and Nanomedicinenanomedicine written by and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immune system has the double role of maintaining tissue integrity and homeostasis and of protecting the organism from possible dangers, from invading pathogens to environmentally-borne dangerous chemicals. New chemicals recognisable by the immune system are engineered nanomaterials/ nanoparticles, new agents in our environment that are becoming common due to their presence in many products, from constructions and building material (e.g., solar cells, pigments and paints, tiles and masonry materials) to daily products (e.g., food packaging, cosmetics, and cigarettes). Human beings can be accidentally exposed to engineered nanomaterials when these are released from products containing them or during production in workplaces. Furthermore, intentional exposure occurs in medicine, as engineered nanoparticles are used as tools for improving delivery of drugs and vaccines, vaccine adjuvants and contrast agents in therapeutic, preventive and diagnostic strategies. Nanoparticles that come in contact with the immune system after unintentional exposure need to be eliminated from the organism as they represent a potential threat. In this case, however, due to their peculiar characteristics of size, shape, surface charge and persistence, nanoparticles may elicit undesirable reactions and have detrimental effects on the immune system, such as cytotoxicity, inflammation, anaphylaxis, immunosuppression. Conversely, nanomedicines need to escape immune recognition/elimination and must persist in the organism long enough for reaching their target and exerting their beneficial effects. Immune cells and molecules at the body surface (airway and digestive mucosae, skin) are the first that come in contact with nanomaterials upon accidental exposure, while immune effectors in blood are those that more easily come in contact with nanomedical products. Thus, evaluating the interaction of the immune system with nanoparticles/nanomaterials is a topic of key importance both in nanotoxicology and in nanomedicine. Immuno-nanosafety studies consider both accidental exposure to nanoparticles, which may occur by skin contact, ingestion or inhalation (at doses and with a frequency that are not known), and medical exposure, which takes place with a defined administration schedule (route, dose, frequency). Many studies focus on the interaction between the immune system and nanoparticles that, for medical purposes, have been specifically modified to stimulate immunity or to avoid immune recognition, as in the case of vaccine carriers/adjuvants or drug delivery systems, respectively. The aims of this Research Topic is to provide an overview of recent strategies: 1.for assessing the immunosafety of engineered nanomaterials/nanoparticles, in particular in terms of activation of inflammatory responses, such as complement activation and allergic reactions, based on the nanomaterial intrinsic characteristics and on the possible carry-over of bioactive contaminants such as LPS. Production of new nanoparticles taking into account their effects on immune responses, in order to avoid undesirable effects on one hand, and to design particles with desirable effects for medical applications on the other hand; 2.for designing more effective nanomedicines by either avoiding or exploiting their interaction with the immune systems, with particular focus on cancer diagnosis and therapy, and vaccination. This collection of articles gives a comprehensive view of the state-of-the-art of the interaction of nanoparticles with the immune system from the two perspectives of safety and medical use, and aims at providing immunologists with the relevant knowledge for designing improved strategies for immunologically safe nanomaterial applications.

Book Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy

Download or read book Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy written by Anubhab Mukherjee and published by Springer Nature. This book was released on 2022-05-31 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, immunomodulatory nanomaterials have gained immense attention due to their involvement in the modulation of the body’s immune response to cancer therapy. This book highlights various immunomodulatory nanomaterials (including organic, polymer, inorganic, liposomes, viral, and protein nanoparticles) and their role in cancer therapy. Additionally, the mechanism of immunomodulation is reviewed in detail. Finally, the challenges of these therapies and their future outlook are discussed. We believe this book will be helpful to a broad community including students, researchers, educators, and industrialists.

Book Nanomaterial mediated Immune Interactions for Disease Diagnosis and Cancer Immunotherapy

Download or read book Nanomaterial mediated Immune Interactions for Disease Diagnosis and Cancer Immunotherapy written by Colin G. Buss and published by . This book was released on 2020 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: The body's natural defenses against disease,facilitated by a complex and highly-evolved immune system, eluded the scientific community's understanding for thousands of years following its first description. It wasn't until the mid to late 1900s that we were able to begin robustly describing the mechanisms through which innate and adaptive immune responses function, but numerous revolutionary discoveries over recent decades have since facilitated meaningful clinical advances impacting innumerable lives. From diagnostic techniques for the characterization of disease, to immunotherapies for their treatment, much of modern medicine can trace its roots to the study of immunology. Yet despite advances in immunological knowledge and its clinical applications, much remains to be understood, and many such applications have major limitations. Mechanisms by which to interface with the immune system have thus generated immense interest, and nanotechnologies have emerged as useful tools in pursuit of this goal. Decades of research in a variety of applications have facilitated our capability to exquisitely engineer nanoparticles to incorporate desirable characteristics, allowing us to utilize these unique materials for the study and modulation of immunological activity. The work in this thesis aims to contribute understanding of the role of immunity in disease by using nanoparticle technologies that interact with the immune system to diagnose, monitor, and treat disease. First, we engineer a set of nanoparticles responsive to infection-associated proteolysis driven by the innate immune response to a pathogen as well as by the pathogen itself. We demonstrate that detection of such proteolytic activity allows for the diagnosis of disease and monitoring of its progression as an immune response mounts, and following therapeutic treatment. Then, we design a separate nanoparticle system to deliver immunostimulatory oligonucleotides for cancer immunotherapy. This technology greatly enhances the activity of a model immunostimulant, suppressing tumor progression and powerfully potentiating immune checkpoint inhibitor antibody treatment, all while greatly reducing the dose of immunostimulant required to have such effects. Together, this work elucidates mechanisms by which nanomaterials can be utilized to interface with the immune system for the detection and modulation of its activity, thereby achieving sensitive and specific disease diagnosis and powerful tumor suppression.

Book Interactions of Engineered and Endogenous Nanoparticles with Cells in the Immune System

Download or read book Interactions of Engineered and Endogenous Nanoparticles with Cells in the Immune System written by Helen Vallhov and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology is a fast developing area, which refers to research and technology development at the nanometer scale, ranging from 0.1-100 nm. The properties of nanomaterials offer the ability to interact with complex biological functions, implying enormous opportunities for novel applications within medicine. However, there is little information available concerning the potential toxicity of nanoparticles and what influence such particles have on the immune system, e.g. on dendritic cells (DCs). DCs are the most efficient antigen presenting cells, having a capacity to initiate and direct immune responses against foreign material. The aim of this thesis was to study effects of differently sized and shaped nanomaterials in the interaction with primary human monocyte derived DCs (MDDCs), thereby obtaining an insight on what impact these materials have on the immune system and their potential use in medical applications. In addition, we wanted to determine if endogenous nanoparticles (exosomes), produced by various cells, are natural targeting vehicles. We show that conventionally produced gold nanoparticles had a maturing effect on human MDDCs, but this was found to be a result of lipopolysaccharide (LPS) contamination. By modification of the production process, clean particles were obtained, which had practically no effect on phenotype or cytokine production of MDDCs. These findings emphasize the importance of retaining high purity during the production of nanoparticles, since possible contaminants may interfere with the assessment of nanoparticles biological effects and result in hazardous particles. To investigate whether various shapes of gold nanoparticles affect MDDC differently, a novel method was developed for the preparation of gold nanorods with high aspect ratios (ARs) based on a self-seeded surfactant-mediated protocol. The biocompatibility of these high AR gold nanorods, with potential use in thermal therapy, was compared with spherical gold nanoparticles

Book Silver Nanoparticles

    Book Details:
  • Author : David Pozo
  • Publisher : IntechOpen
  • Release : 2010-03-01
  • ISBN : 9789533070285
  • Pages : 344 pages

Download or read book Silver Nanoparticles written by David Pozo and published by IntechOpen. This book was released on 2010-03-01 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology will be soon required in most engineering and science curricula. It cannot be questioned that cutting-edge applications based on nanoscience are having a considerable impact in nearly all fields of research, from basic to more problem-solving scientific enterprises. In this sense, books like “Silver Nanoparticles” aim at filling the gaps for comprehensive information to help both newcomers and experts, in a particular fast-growing area of research. Besides, one of the key features of this book is that it could serve both academia and industry. “Silver nanoparticles” is a collection of eighteen chapters written by experts in their respective fields. These reviews are representative of the current research areas within silver nanoparticle nanoscience and nanotechnology.

Book Nanoparticle Toxicity and Compatibility

Download or read book Nanoparticle Toxicity and Compatibility written by Jorddy N. Cruz and published by Materials Research Forum LLC. This book was released on 2024-03-15 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on the interplay between nanoparticles and biological systems. Topics covered include the synthesis, characterization, and application of nanomaterials in tissue engineering; the interaction of nanoparticles with macromolecules; biomedical and food science applications; the cardiovascular toxicity of nanoparticles; colon targeted nano drug delivery systems; the biocompatibility and immunogenicity of nanoparticles; plasmon-enhanced biosensing applications; strategies for enhancing the biocompatibility of nanoparticles; the environmental impact of nanoparticles; as well as the intricate dynamics between nanoparticles and living organisms. Keywords: Tissue Engineering, Cardiovascular Toxicity, Drug Delivery Systems, Plasmon-Enhanced Biosensing, Biocompatibility of Nanoparticles, Ecotoxicology of Nanoparticles, Bioinspired Nanosynthesis, Hepatotoxicity, Nano Drug Delivery, Nanofabrication, Nanorobots, Plasmonics, Probiotics, Protein.

Book Silver Nanoparticles

    Book Details:
  • Author : David Pozo
  • Publisher : IntechOpen
  • Release : 2010-03-01
  • ISBN : 9789533070285
  • Pages : 344 pages

Download or read book Silver Nanoparticles written by David Pozo and published by IntechOpen. This book was released on 2010-03-01 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology will be soon required in most engineering and science curricula. It cannot be questioned that cutting-edge applications based on nanoscience are having a considerable impact in nearly all fields of research, from basic to more problem-solving scientific enterprises. In this sense, books like “Silver Nanoparticles” aim at filling the gaps for comprehensive information to help both newcomers and experts, in a particular fast-growing area of research. Besides, one of the key features of this book is that it could serve both academia and industry. “Silver nanoparticles” is a collection of eighteen chapters written by experts in their respective fields. These reviews are representative of the current research areas within silver nanoparticle nanoscience and nanotechnology.

Book Immune System Modulations in Cancer Treatment

Download or read book Immune System Modulations in Cancer Treatment written by Kadriye Kƒ±zƒ±lbey and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer immunotherapy is based on the idea of overcoming the main problems in the traditional cancer treatments and enhancing the patient,Äôs long-term survival and quality of life. Immunotherapy methods aimed to influence the immune system, to detect and eradicate the tumors site and predict the potential results. Nowadays, nanomaterials-based immunotherapy approaches are gaining interest due to numerous advantages like their ability to target cells and tissues directly and reduce the off-target toxicity. Therefore, topics about immune system components, nanomaterials, their usage in immunotherapy and the benefits they provide will be discussed in this presented book chapter. Immunotherapy can be divided into two groups mainly; active and passive immunotherapy including their subtitles such as immune checkpoint inhibitors, adoptive immunotherapy, CAR-T therapies, vaccines, and monoclonal antibodies. Main classification and the methods will be evaluated. Furthermore, state-of-art nanocarriers based immunotherapy methods will be mentioned in detail. The terms of size, charge, material type and surface modifications of the nanoparticles will be reviewed to understand the interference of immune system and nanoparticles and their advantages/disadvantages in immunotherapy systems.

Book Nanoparticles for Rational Vaccine Design

Download or read book Nanoparticles for Rational Vaccine Design written by Harvinder Singh Gill and published by Springer Nature. This book was released on 2021-08-30 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces nanoparticles as a powerful platform for vaccine design. Current challenges in vaccine development are discussed and the unique advantages nanoparticles provide in overcoming these challenges are explored. The authors offer fascinating insights into the immunological assets of using nanoparticles as delivery vehicles or adjuvants and present different materials that are being used in nanoparticle-based vaccine development, covering peptides, proteins, polymers, virus-like particles, and liposomes. Its contemporary research insights and practical examples for applications make this volume an inspiring read for researchers and clinicians in vaccinology and immunology. Chapter "Liposome Formulations as Adjuvants for Vaccines" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Book Lipid based Nanoparticles for Altering Immune Response

Download or read book Lipid based Nanoparticles for Altering Immune Response written by Noha Samir Mohamed Ismail and published by . This book was released on 2015 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Since cancer is an extremely heterogeneous disease of origin, scientists are always trying to define novel approaches that can eliminate this disease. Over decades now, surgery, radiotherapy and chemotherapy have been the conventional methods to eradicate cancer. Unfortunately, cancer resistance has developed, in which tumor cells became resistant to the majority of chemotherapeutics. Consequently, people started to use combination therapy as a more intensified protocol to counteract the aggressiveness of cancer. However, the results are not satisfactory till now and lots of optimizations are needed in order to make sure that synergistic not antagonistic effects are happening. That is why scientists started to revisit cancer immunotherapy field after long years of its discovery. They are trying to understand more about the manifestations that occur in case of tumor induced immunosuppression. They are rapidly defining new approaches for harnessing the immune system against cancer. Different methodologies are developed in the last ten years, yet optimizations are still in process. The significant hurdle in the field of cancer immunotherapy is the selectivity towards certain immune cell population. In other words, how selective targeting could be achieved with high affinity to the cell of interest. That led to the evolution of cancer nano-immunotherapy where nanoparticles are engineered in a certain manner that can elicit a selective interaction with the target receptor. Many studies have revealed how nanotechnology is a promising tool in harnessing immune system against cancer. However, targeting as a technique is still paving the way for the optimum particle-cell interaction. In the current study, we are paving the way to target immune cells infiltrating the tumor. The challenge here is that the population of cancer cells themselves are much more than the immune cells. In this study, the response of different immune cell lines towards internalization of different surface charged lipid-based nanoparticles (NPs) was investigated at different time frames. The hypothesis is whether specific immune cell line isolated from melanoma tumor model and lymphoid organ like spleen could be targeted with liposomes having different surface charges, could this be considered a novel approach for targeting immune cells passively depending only on surface charge. In the first part, three sets of fluorescently labelled nano-liposomes were engineered as a model for different surface charges, the cationic DOTAP NP, anionic DOPG NP and near neutral DOPC NP with mean diameter of 220, 190, 210 nm and Zeta Potential of +36, -48 and -17.4 mV respectively. Physical stability of the NPs was evaluated by monitoring the changes in size and zeta potential. B16 melanoma cancer model was induced subcutaneously in C57BL/6 black mice (10 weeks age), divided into four groups each of five mice. CD11c Dendritic Cells (DCs), CD11b macrophages, CD90.2 T-cells and CD49b Natural Killer (NK) cells were isolated from the tumors and spleens of each group. The three sets of NPs were tested against the isolated cell lines. The cellular uptake (internalization) was assessed by normalizing the fluorescence of the cells against their protein concentration, then all samples were acquired to flow cytometry, and shifts in fluorescence histograms on horizontal axis were monitored against PE channel on the vertical axis. Results reveal the presence of preferential internalization of specific surface charge over others in some cell lines in different time frames. For the first time differences in the internalization pattern are reported in the same immune cell line isolated from two different contexts tumor and spleen. These results might serve as a guideline for a rational design of successful nano-carriers that can maximize the targeting, and hence the therapeutic efficacy towards certain population of immune cells. In the second part and in the sense of screening the different pathways that contribute to immunosuppression, STAT3 (Signal Transducer and Activator of Transcription 3) pathway is considered one of the promising targets that when inhibited will reverse the immunosuppressed status of DCs. The molecular STAT3 inhibitor is investigated for the first time for its ability to offer superior properties in terms of specificity of STAT3 without affecting the other STATs and eliciting immunomodulatory effect. Pegylated nano-liposomes were synthesized with size of 190 nm loaded with conjugated form of the drug which is drug-cholesterol in order to maximize the loading efficiency reaching 82±4% and physical stability with minimal changes in size and zeta potential. Cryo-TEM revealed the formation of predominant unilamillar structures. The efficacy of conjugated drug-NP was evaluated in-vitro on different cells: Bone Marrow derived DCs (BMDCs), DC cell line, B16F10, 4T1 and MDA-MB-231. The BMDCs primary cultures were generated from bone marrow of C57BL/6 mice femurs. The purity of CD11c lineage of BMDCs was assessed by flow cytometry and showed 70-80% purity. In order to mimic the tumor microenvironment surrounding DCs in the tumor i.e. induce immunosuppression and downregulation of DCs surface receptors, high levels of phospho-STAT3 (pSTAT3) were induced via conditioning DCs with different conditioning media of B16, LLC, and 4T1. It has been revealed that B16 conditioning media induced the highest amount of pSTAT3 based on western blot, flow cytometry and cytokine analysis. DCs by then showed downregulation of CD80, CD86 and major histocompatibility complex class II (MHCII). Finally, the drug-NP and free drug (5μmole) were added to the immunosuppressed DCs for 24hrs and maturation status was assessed using flow cytometry. Expression of CD86, MHCII and CD80 were evaluated after gating CD11c double positive population. No significant change was observed in case of CD80. Slight increase was observed in case of CD86. However, surprisingly there was a dramatic increase in MHCII with 3 folds higher expression in case of free drug and 1.3 fold with drug-NP in only 24 hrs, this reflects sustained release of the drug from the NP. These results demonstrate the potential of the STAT3 inhibitor in reversing the immunosuppressed status of DCs in tumor microenvironment and its immunomodulatory role for the first time.

Book Cell Membrane Coated Nanoparticles for Immune Modulation

Download or read book Cell Membrane Coated Nanoparticles for Immune Modulation written by Ashley Victoria Kroll and published by . This book was released on 2019 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology is a cutting edge scientific area that is fundamentally changing the way we design and administer medicines and therapies to patients. One area in which nanomedicine can have a large impact is through immune modulation and "nano-immunoengineering". The size and unique cell-particle interaction patterns enable nanoparticles to interact with the immune system in ways that can impact the immune system in radically new and efficacious ways. This dissertation focuses on demonstrating how cell membrane coating can be merged with nanoparticle design to facilitate immune modulation to improve a variety of pathological conditions. The rationale for cell membrane coating and the use of nanoparticles in immune modulation is discussed in the first chapter of the dissertation. The second portion of the dissertation concentrates on developing cancer cell membrane-coated nanoparticles for anticancer vaccination. Using the membrane of cancer cells serves as an ideal and multivalent antigen source, while coating around the adjuvant-loaded nanoparticle core provide immune stimulation and a codelivery of both components to the lymphatic system. The third portion of the dissertation dives into the use of erythrocyte membrane-coated nanoparticles for antibacterial vaccination. Pore-forming toxins naturally embed into red blood cell membrane, and can be delivered in the nanoparticulate form to provide intact toxin antigens to the immune system. Formation of anti-toxin antibodies then protect from toxin damage and also provide antivirulence immunity against bacterial infections. Finally, the fourth section of this dissertation will focus on a novel "nanosponge" for immune thrombocytopenia purpura. Platelet membrane coated nanoparticles can specifically absorb anti-platelet antibodies, sparing immune destruction of real platelets and reducing disease symptoms. This dissertation will serve as an example of applying rational design and engineering of cell membrane coating and nanoparticle synthesis and loading to enhance immune system intervention in a variety of internal and external pathological challenges. By harnessing these tools, cell membrane-coated nanoparticles can have a great impact in the field of immunotherapy, and have much potential to be expanded upon for new therapeutic and prophylactic modalities.

Book Metallic Nanocrystallites and their Interaction with Microbial Systems

Download or read book Metallic Nanocrystallites and their Interaction with Microbial Systems written by Anil K. Suresh and published by Springer Science & Business Media. This book was released on 2012-03-03 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although interactions between nanoparticles and microorganisms in the environment are unavoidable and commonplace, it is still not clear what potential effects they may have. Metallic Nanocrystallites and their Interface with Microbial Systems not only illustrates how microbes and these particular nanoparticles interact but also it describes the consequences of these interactions. This brief discusses the impact of gold, silver, zinc oxide, and cerium oxide nanoparticles on the growth and viability of both Gram-negative and Gram-positive bacterium. Moreover, it analyses the relationship between bacterial growth inhibition, reactive oxygen species generation, the regulation of transcriptional stress genomes, and the toxicity of these materials. Finally, it reviews the specific metallic nanomaterials and highlights their modes of synthesis, reactivity at surfaces, and the importance of assay procedures in determining their toxicity levels. Various microscopy techniques used to determine their mechanisms of action are also presented. Metallic Nanocrystallites and their Interface with Microbial Systems will be a valuable source to the scientific and industrial community as well as to students and researchers in microbiology, biotechnology, nanotechnology, toxicology, materials science, biomedical engineering, cell and molecular biology.