EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Deep Learning with Python

Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Book Game Theory and Strategy

    Book Details:
  • Author : Philip D. Straffin
  • Publisher : American Mathematical Society
  • Release : 2023-01-06
  • ISBN : 1470471965
  • Pages : 256 pages

Download or read book Game Theory and Strategy written by Philip D. Straffin and published by American Mathematical Society. This book was released on 2023-01-06 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to mathematical game theory, which might better be called the mathematical theory of conflict and cooperation. It is applicable whenever two individuals—or companies, or political parties, or nations—confront situations where the outcome for each depends on the behavior of all. What are the best strategies in such situations? If there are chances of cooperation, with whom should you cooperate, and how should you share the proceeds of cooperation? Since its creation by John von Neumann and Oskar Morgenstern in 1944, game theory has shed new light on business, politics, economics, social psychology, philosophy, and evolutionary biology. In this book, its fundamental ideas are developed with mathematics at the level of high school algebra and applied to many of these fields (see the table of contents). Ideas like “fairness” are presented via axioms that fair allocations should satisfy; thus the reader is introduced to axiomatic thinking as well as to mathematical modeling of actual situations.

Book Supervised Sequence Labelling with Recurrent Neural Networks

Download or read book Supervised Sequence Labelling with Recurrent Neural Networks written by Alex Graves and published by Springer. This book was released on 2012-02-06 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.

Book ECAI 2020

    Book Details:
  • Author : G. De Giacomo
  • Publisher : IOS Press
  • Release : 2020-09-11
  • ISBN : 164368101X
  • Pages : 3122 pages

Download or read book ECAI 2020 written by G. De Giacomo and published by IOS Press. This book was released on 2020-09-11 with total page 3122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of more than 1,700 submissions was received for ECAI 2020, of which 1,443 were reviewed. Of these, 361 full-papers and 36 highlight papers were accepted (an acceptance rate of 25% for full-papers and 45% for highlight papers). The book is divided into three sections: ECAI full papers; ECAI highlight papers; and PAIS papers. The topics of these papers cover all aspects of AI, including Agent-based and Multi-agent Systems; Computational Intelligence; Constraints and Satisfiability; Games and Virtual Environments; Heuristic Search; Human Aspects in AI; Information Retrieval and Filtering; Knowledge Representation and Reasoning; Machine Learning; Multidisciplinary Topics and Applications; Natural Language Processing; Planning and Scheduling; Robotics; Safe, Explainable, and Trustworthy AI; Semantic Technologies; Uncertainty in AI; and Vision. The book will be of interest to all those whose work involves the use of AI technology.

Book Artificial Neural Networks and Machine Learning     ICANN 2020

Download or read book Artificial Neural Networks and Machine Learning ICANN 2020 written by Igor Farkaš and published by Springer Nature. This book was released on 2020-10-17 with total page 891 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings set LNCS 12396 and 12397 constitute the proceedings of the 29th International Conference on Artificial Neural Networks, ICANN 2020, held in Bratislava, Slovakia, in September 2020.* The total of 139 full papers presented in these proceedings was carefully reviewed and selected from 249 submissions. They were organized in 2 volumes focusing on topics such as adversarial machine learning, bioinformatics and biosignal analysis, cognitive models, neural network theory and information theoretic learning, and robotics and neural models of perception and action. *The conference was postponed to 2021 due to the COVID-19 pandemic.

Book Supervised Machine Learning for Text Analysis in R

Download or read book Supervised Machine Learning for Text Analysis in R written by Emil Hvitfeldt and published by CRC Press. This book was released on 2021-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Book Practical Natural Language Processing

Download or read book Practical Natural Language Processing written by Sowmya Vajjala and published by O'Reilly Media. This book was released on 2020-06-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Book Natural Language Processing and Chinese Computing

Download or read book Natural Language Processing and Chinese Computing written by Lu Wang and published by Springer Nature. This book was released on 2021-10-11 with total page 861 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set of LNAI 13028 and LNAI 13029 constitutes the refereed proceedings of the 10th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2021, held in Qingdao, China, in October 2021. The 66 full papers, 23 poster papers, and 27 workshop papers presented were carefully reviewed and selected from 446 submissions. They are organized in the following areas: Fundamentals of NLP; Machine Translation and Multilinguality; Machine Learning for NLP; Information Extraction and Knowledge Graph; Summarization and Generation; Question Answering; Dialogue Systems; Social Media and Sentiment Analysis; NLP Applications and Text Mining; and Multimodality and Explainability.

Book Advances in Computational Intelligence

Download or read book Advances in Computational Intelligence written by Ignacio Rojas and published by Springer. This book was released on 2019-06-05 with total page 956 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set LNCS 10305 and LNCS 10306 constitutes the refereed proceedings of the 15th International Work-Conference on Artificial Neural Networks, IWANN 2019, held at Gran Canaria, Spain, in June 2019. The 150 revised full papers presented in this two-volume set were carefully reviewed and selected from 210 submissions. The papers are organized in topical sections on machine learning in weather observation and forecasting; computational intelligence methods for time series; human activity recognition; new and future tendencies in brain-computer interface systems; random-weights neural networks; pattern recognition; deep learning and natural language processing; software testing and intelligent systems; data-driven intelligent transportation systems; deep learning models in healthcare and biomedicine; deep learning beyond convolution; artificial neural network for biomedical image processing; machine learning in vision and robotics; system identification, process control, and manufacturing; image and signal processing; soft computing; mathematics for neural networks; internet modeling, communication and networking; expert systems; evolutionary and genetic algorithms; advances in computational intelligence; computational biology and bioinformatics.

Book Web and Big Data

    Book Details:
  • Author : Leong Hou U
  • Publisher : Springer
  • Release : 2018-10-20
  • ISBN : 3030012980
  • Pages : 399 pages

Download or read book Web and Big Data written by Leong Hou U and published by Springer. This book was released on 2018-10-20 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the First APWeb-WAIM 2018 Workshops, held jointly with the Second International Joint Conference APWeb-WAIM 2018 in Macau, China, in July 2018. The 31 full papers presented were carefully reviewed and selected from 44 submissions. The papers originating from five workshops present cutting-edge ideas, results, experiences, techniques, and tools from all aspects of web data management with the focus on mobile web data analytics; knowledge graph management and analysis; data management and mining on MOOCs; Big data analytics for healthcare; data science.

Book Text Analytics Unleashed  Enhancing Short Text Conversations and Tackling SMS Spam with Deep Learning and Machine Learning Techniques

Download or read book Text Analytics Unleashed Enhancing Short Text Conversations and Tackling SMS Spam with Deep Learning and Machine Learning Techniques written by R.Pallavi Reddy and published by Archers & Elevators Publishing House. This book was released on with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Deep Learning for Natural Language Processing

Download or read book Deep Learning for Natural Language Processing written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2017-11-21 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.

Book Natural Language Processing and Chinese Computing

Download or read book Natural Language Processing and Chinese Computing written by Jie Tang and published by Springer Nature. This book was released on 2019-09-30 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set of LNAI 11838 and LNAI 11839 constitutes the refereed proceedings of the 8th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2019, held in Dunhuang, China, in October 2019. The 85 full papers and 56 short papers presented were carefully reviewed and selected from 492 submissions. They are organized in the following topical sections: Conversational Bot/QA/IR; Knowledge graph/IE; Machine Learning for NLP; Machine Translation; NLP Applications; NLP for Social Network; NLP Fundamentals; Text Mining; Short Papers; Explainable AI Workshop; Student Workshop: Evaluation Workshop.

Book Engineering Applications of Neural Networks

Download or read book Engineering Applications of Neural Networks written by Elias Pimenidis and published by Springer. This book was released on 2018-08-20 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 19th International Conference on Engineering Applications of Neural Networks, EANN 2018, held in Bristol, UK, in September 2018. The 16 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 39 submissions. The papers are organized in topical sections on activity recognition, deep learning, extreme learning machine, machine learning applications, predictive models, fuzzy and recommender systems, recurrent neural networks, spiking neural networks.

Book Intelligent Systems and Applications

Download or read book Intelligent Systems and Applications written by Kohei Arai and published by Springer Nature. This book was released on 2020-08-25 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book Intelligent Systems and Applications - Proceedings of the 2020 Intelligent Systems Conference is a remarkable collection of chapters covering a wider range of topics in areas of intelligent systems and artificial intelligence and their applications to the real world. The Conference attracted a total of 545 submissions from many academic pioneering researchers, scientists, industrial engineers, students from all around the world. These submissions underwent a double-blind peer review process. Of those 545 submissions, 177 submissions have been selected to be included in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have enabled a larger number of problems to be tackled more effectively.This branching out of computational intelligence in several directions and use of intelligent systems in everyday applications have created the need for such an international conference which serves as a venue to report on up-to-the-minute innovations and developments. This book collects both theory and application based chapters on all aspects of artificial intelligence, from classical to intelligent scope. We hope that readers find the volume interesting and valuable; it provides the state of the art intelligent methods and techniques for solving real world problems along with a vision of the future research.

Book Deep Learning in Natural Language Processing

Download or read book Deep Learning in Natural Language Processing written by Li Deng and published by Springer. This book was released on 2018-05-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.

Book Computational Intelligence and Intelligent Systems

Download or read book Computational Intelligence and Intelligent Systems written by Hu Peng and published by Springer. This book was released on 2019-02-07 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed proceedings of the 10th International Symposium, ISICA 2018, held in Jiujiang, China, in October 2018.The 32 full papers presented were carefully reviewed and selected from 83 submissions. The papers are organized in topical sections on nature-inspired computing; bio-inspired computing; novel operators in evolutionary algorithms; automatic object segmentation and detection; and image colorization; multilingual automatic document classication and translation; knowledge-based articial intelligence; predictive data mining.