Download or read book Applications of Artificial Neural Networks for Nonlinear Data written by Patel, Hiral Ashil and published by IGI Global. This book was released on 2020-09-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.
Download or read book Artificial Neural Networks for Engineering Applications written by Alma Y Alanis and published by Academic Press. This book was released on 2019-02-13 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Download or read book Business Applications of Neural Networks written by Bill Edisbury and published by World Scientific. This book was released on 2000 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are increasingly being used in real-world business applications and, in some cases, such as fraud detection, they have already become the method of choice. Their use for risk assessment is also growing and they have been employed to visualise complex databases for marketing segmentation. This boom in applications covers a wide range of business interests - from finance management, through forecasting, to production. The combination of statistical, neural and fuzzy methods now enables direct quantitative studies to be carried out without the need for rocket-science expertise. This is a review of the state-of-the-art in applications of neural-network methods in three important areas of business analysis. It includes a tutorial chapter to introduce new users to the potential and pitfalls of this new technology.
Download or read book Applications of Neural Networks written by Alan Murray and published by Springer Science & Business Media. This book was released on 1994-12-31 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Neural Networks gives a detailed description of 13 practical applications of neural networks, selected because the tasks performed by the neural networks are real and significant. The contributions are from leading researchers in neural networks and, as a whole, provide a balanced coverage across a range of application areas and algorithms. The book is divided into three sections. Section A is an introduction to neural networks for nonspecialists. Section B looks at examples of applications using `Supervised Training'. Section C presents a number of examples of `Unsupervised Training'. For neural network enthusiasts and interested, open-minded sceptics. The book leads the latter through the fundamentals into a convincing and varied series of neural success stories -- described carefully and honestly without over-claiming. Applications of Neural Networks is essential reading for all researchers and designers who are tasked with using neural networks in real life applications.
Download or read book Application Of Neural Networks And Other Learning Technologies In Process Engineering written by M A Hussain and published by World Scientific. This book was released on 2001-04-02 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a follow-up to the IChemE symposium on “Neural Networks and Other Learning Technologies”, held at Imperial College, UK, in May 1999. The interest shown by the participants, especially those from the industry, has been instrumental in producing the book. The papers have been written by contributors of the symposium and experts in this field from around the world. They present all the important aspects of neural network utilisation as well as show the versatility of neural networks in various aspects of process engineering problems — modelling, estimation, control, optimisation and industrial applications.
Download or read book Neural Networks Computational Models and Applications written by Huajin Tang and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.
Download or read book Applied Artificial Neural Network Methods For Engineers And Scientists Solving Algebraic Equations written by Snehashish Chakraverty and published by World Scientific. This book was released on 2021-01-26 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.
Download or read book Neural Nets Applications in Geography written by Bruce C. Hewitson and published by Springer Science & Business Media. This book was released on 1994 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural nets offer a new strategy for spatial analysis, and their application holds enormous potential for the geographic sciences. However, the number of studies that have utilized these techniques is limited. This lack of interest can be attributed, in part, to lack of exposure, to the use of extensive and often confusing jargon, and to the misapprehension that, without an underlying statistical model, the explanatory power of the neural net is very low. This text attacks all three issues, demonstrating a wide variety of neural net applications in geography in a simple manner, with minimal jargon.
Download or read book Artificial Higher Order Neural Networks for Computer Science and Engineering Trends for Emerging Applications written by Zhang, Ming and published by IGI Global. This book was released on 2010-02-28 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Download or read book Research Anthology on Artificial Neural Network Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-07-16 with total page 1575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Download or read book Process Neural Networks written by Xingui He and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.
Download or read book The Application of Neural Networks in the Earth System Sciences written by Vladimir M. Krasnopolsky and published by Springer Science & Business Media. This book was released on 2013-06-14 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together a representative set of Earth System Science (ESS) applications of the neural network (NN) technique. It examines a progression of atmospheric and oceanic problems, which, from the mathematical point of view, can be formulated as complex, multidimensional, and nonlinear mappings. It is shown that these problems can be solved utilizing a particular type of NN – the multilayer perceptron (MLP). This type of NN applications covers the majority of NN applications developed in ESSs such as meteorology, oceanography, atmospheric and oceanic satellite remote sensing, numerical weather prediction, and climate studies. The major properties of the mappings and MLP NNs are formulated and discussed. Also, the book presents basic background for each introduced application and provides an extensive set of references. “This is an excellent book to learn how to apply artificial neural network methods to earth system sciences. The author, Dr. Vladimir Krasnopolsky, is a universally recognized master in this field. With his vast knowledge and experience, he carefully guides the reader through a broad variety of problems found in the earth system sciences where neural network methods can be applied fruitfully. (...) The broad range of topics covered in this book ensures that researchers/graduate students from many fields (...) will find it an invaluable guide to neural network methods.” (Prof. William W. Hsieh, University of British Columbia, Vancouver, Canada) “Vladimir Krasnopolsky has been the “founding father” of applying computation intelligence methods to environmental science; (...) Dr. Krasnopolsky has created a masterful exposition of a young, yet maturing field that promises to advance a deeper understanding of best modeling practices in environmental science.” (Dr. Sue Ellen Haupt, National Center for Atmospheric Research, Boulder, USA) “Vladimir Krasnopolsky has written an important and wonderful book on applications of neural networks to replace complex and expensive computational algorithms within Earth System Science models. He is uniquely qualified to write this book, since he has been a true pioneer with regard to many of these applications. (...) Many other examples of creative emulations will inspire not just readers interested in the Earth Sciences, but any other modeling practitioner (...) to address both theoretical and practical complex problems that may (or will!) arise in a complex system." ” (Prof. Eugenia Kalnay, University of Maryland, USA)
Download or read book Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning written by Richard Segall and published by Engineering Science Reference. This book was released on 2021-11 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns"--
Download or read book State of the Art in Neural Networks and Their Applications written by Ayman S. El-Baz and published by Academic Press. This book was released on 2021-07-21 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: State of the Art in Neural Networks and Their Applications presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. Advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing and suitable data analytics useful for clinical diagnosis and research applications are covered, including relevant case studies. The application of Neural Network, Artificial Intelligence, and Machine Learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume 1 covers the state-of-the-art deep learning approaches for the detection of renal, retinal, breast, skin, and dental abnormalities and more. - Includes applications of neural networks, AI, machine learning, and deep learning techniques to a variety of imaging technologies - Provides in-depth technical coverage of computer-aided diagnosis (CAD), with coverage of computer-aided classification, Unified Deep Learning Frameworks, mammography, fundus imaging, optical coherence tomography, cryo-electron tomography, 3D MRI, CT, and more - Covers deep learning for several medical conditions including renal, retinal, breast, skin, and dental abnormalities, Medical Image Analysis, as well as detection, segmentation, and classification via AI
Download or read book Handbook of Research on Applications and Implementations of Machine Learning Techniques written by Sathiyamoorthi Velayutham and published by IGI Global, Engineering Science Reference. This book was released on 2019-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book examines the practical applications and implementation of various machine learning techniques in various fields such as agriculture, medical, image processing, and networking"--
Download or read book Engineering Applications of Neural Networks written by Giacomo Boracchi and published by Springer. This book was released on 2017-07-30 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 18th International Conference on Engineering Applications of Neural Networks, EANN 2017, held in Athens, Greece, in August 2017. The 40 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 83 submissions. The papers cover the topics of deep learning, convolutional neural networks, image processing, pattern recognition, recommendation systems, machine learning, and applications of Artificial Neural Networks (ANN) applications in engineering, 5G telecommunication networks, and audio signal processing. The volume also includes papers presented at the 6th Mining Humanistic Data Workshop (MHDW 2017) and the 2nd Workshop on 5G-Putting Intelligence to the Network Edge (5G-PINE).
Download or read book Neural Networks written by Gérard Dreyfus and published by Springer Science & Business Media. This book was released on 2005-11-25 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts and edited to present a coherent and comprehensive, yet not redundant, practically oriented introduction.