EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Scattering Theory for Transport Phenomena

Download or read book Scattering Theory for Transport Phenomena written by Hassan Emamirad and published by Springer Nature. This book was released on 2021-06-27 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scattering theory for transport phenomena was initiated by P. Lax and R. Phillips in 1967. Since then, great progress has been made in the field and the work has been ongoing for more than half a century. This book shows part of that progress. The book is divided into 7 chapters, the first of which deals with preliminaries of the theory of semigroups and C*-algebra, different types of semigroups, Schatten–von Neuman classes of operators, and facts about ultraweak operator topology, with examples using wavelet theory. Chapter 2 goes into abstract scattering theory in a general Banach space. The wave and scattering operators and their basic properties are defined. Some abstract methods such as smooth perturbation and the limiting absorption principle are also presented. Chapter 3 is devoted to the transport or linearized Boltzmann equation, and in Chapter 4 the Lax and Phillips formalism is introduced in scattering theory for the transport equation. In their seminal book, Lax and Phillips introduced the incoming and outgoing subspaces, which verify their representation theorem for a dissipative hyperbolic system initially and also matches for the transport problem. By means of these subspaces, the Lax and Phillips semigroup is defined and it is proved that this semigroup is eventually compact, hence hyperbolic. Balanced equations give rise to two transport equations, one of which can satisfy an advection equation and one of which will be nonautonomous. For generating, the Howland semigroup and Howland’s formalism must be used, as shown in Chapter 5. Chapter 6 is the highlight of the book, in which it is explained how the scattering operator for the transport problem by using the albedo operator can lead to recovery of the functionality of computerized tomography in medical science. The final chapter introduces the Wigner function, which connects the Schrödinger equation to statistical physics and the Husimi distribution function. Here, the relationship between the Wigner function and the quantum dynamical semigroup (QDS) can be seen.

Book Scattering Matrix Approach to Non stationary Quantum Transport

Download or read book Scattering Matrix Approach to Non stationary Quantum Transport written by Michael V. Moskalets and published by World Scientific. This book was released on 2012 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to introduce the basic elements of the scattering matrix approach to transport phenomena in dynamical quantum systems of non-interacting electrons. This approach permits a physically clear and transparent description of transport processes in dynamical mesoscopic systems, promising basic elements of solid-state devices for quantum information processing. One of the key effects, the quantum pump effect, is considered in detail. In addition, the theory for the recently implemented new dynamical source ? injecting electrons with time delay much larger than an electron coherence time ? is offered. This theory provides a simple description of quantum circuits with such a single-particle source and shows in an unambiguous way that the tunability inherent to the dynamical systems (in contrast to the stationary ones) leads to a number of unexpected but fundamental effects.

Book Electron Transport Phenomena in Semiconductors

Download or read book Electron Transport Phenomena in Semiconductors written by B. M. Askerov and published by World Scientific. This book was released on 1994 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the first systematic and detailed exposition of the linear theory of the stationary electron transport phenomena in semiconductors. Arbitrary isotropic and anisotropic nonparabolic bands as well as p-Ge-type bands are considered. Phonon drag effect are taken account of in an arbitrary nonquantizing magnetic field. Scattering theory is discussed in detail with account taken of the Bloch wave functions effect. Transport phenomena in the quantizing magnetic field are studied as well as the size effects in thin films. Band structures of the semiconductors and semiconductor compounds of interest are also considered.The main part of the book deals with the three important problems: charge carrier statistics in a semiconductor, classical and quantum theory of the electron transport phenomena. All the theoretical results considered as well as the validity conditions are presented in the form which may be directly used to interpret experimental data.

Book Electrons and Phonons

    Book Details:
  • Author : J.M. Ziman
  • Publisher : Oxford University Press
  • Release : 2001-02
  • ISBN : 9780198507796
  • Pages : 572 pages

Download or read book Electrons and Phonons written by J.M. Ziman and published by Oxford University Press. This book was released on 2001-02 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a classic text of its time in condensed matter physics.

Book Scattering Theory  Revised Edition

Download or read book Scattering Theory Revised Edition written by Peter D. Lax and published by Academic Press. This book was released on 1990-02-22 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition of a classic book, which established scattering theory as an important and fruitful area of research, reflects the wealth of new results discovered in the intervening years. This new, revised edition should continue to inspire researchers to expand the application of the original ideas proposed by the authors.

Book Principles of Scattering and Transport of Light

Download or read book Principles of Scattering and Transport of Light written by Rémi Carminati and published by Cambridge University Press. This book was released on 2021-07-29 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic and accessible treatment of light scattering and transport in disordered media from first principles.

Book Elementary Scattering Theory

Download or read book Elementary Scattering Theory written by D.S. Sivia and published by Oxford University Press, USA. This book was released on 2011-01-06 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the basic theoretical background for X-ray and neutron scattering experiments. Since these techniques are increasingly being used by biologists and chemists, as well as physicists, the book is intended to be accessible to a broad spectrum of scientists.

Book Scattering Theory

    Book Details:
  • Author : Peter D. Lax
  • Publisher : Elsevier
  • Release : 2016-06-03
  • ISBN : 1483223639
  • Pages : 289 pages

Download or read book Scattering Theory written by Peter D. Lax and published by Elsevier. This book was released on 2016-06-03 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scattering Theory describes classical scattering theory in contrast to quantum mechanical scattering theory. The book discusses the formulation of the scattering theory in terms of the representation theory. The text also explains the relation between the behavior of the solution of the perturbed problem at small distances for large positive times and the analytic continuation of the scattering matrix. To prove the representation theorem, the text cites the methods used by Masani and Robertson in their work dealing with stationary stochastic processes. The book also applies the translation representation theory to a wave equation to obtain a comparison of the asymptotic properties of the free space solution with those of the solution in an exterior domain. The text discusses the solution of the wave equation in an exterior domain by fitting this problem into the abstract framework to get a verification of the hypotheses in some other theorems. The general theory of scattering can be applied to symmetric hyperbolic systems in which all sound speeds are different from zero, as well as to the acoustic equation which has a potential that can cause an energy form to become indefinite. The book is suitable for proponents of analytical mathematics, particle physics, and quantum physics.

Book Semiconductor Optics and Transport Phenomena

Download or read book Semiconductor Optics and Transport Phenomena written by Wilfried Schäfer and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge.

Book III  Scattering Theory

    Book Details:
  • Author : Michael Reed
  • Publisher : Elsevier
  • Release : 1979-05-29
  • ISBN : 0080925383
  • Pages : 480 pages

Download or read book III Scattering Theory written by Michael Reed and published by Elsevier. This book was released on 1979-05-29 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scattering theory is the study of an interacting system on a scale of time and/or distance which is large compared to the scale of the interaction itself. As such, it is the most effective means, sometimes the only means, to study microscopic nature. To understand the importance of scattering theory, consider the variety of ways in which it arises. First, there are various phenomena in nature (like the blue of the sky) which are the result of scattering. In order to understand the phenomenon (and to identify it as the result of scattering) one must understand the underlying dynamics and its scattering theory. Second, one often wants to use the scattering of waves or particles whose dynamics on knows to determine the structure and position of small or inaccessible objects. For example, in x-ray crystallography (which led to the discovery of DNA), tomography, and the detection of underwater objects by sonar, the underlying dynamics is well understood. What one would like to construct are correspondences that link, via the dynamics, the position, shape, and internal structure of the object to the scattering data. Ideally, the correspondence should be an explicit formula which allows one to reconstruct, at least approximately, the object from the scattering data. The main test of any proposed particle dynamics is whether one can construct for the dynamics a scattering theory that predicts the observed experimental data. Scattering theory was not always so central the physics. Even thought the Coulomb cross section could have been computed by Newton, had he bothered to ask the right question, its calculation is generally attributed to Rutherford more than two hundred years later. Of course, Rutherford's calculation was in connection with the first experiment in nuclear physics.

Book The Physics of Nanoelectronics

Download or read book The Physics of Nanoelectronics written by Tero T. Heikkilä and published by OUP Oxford. This book was released on 2013-02-01 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in nanotechnology have allowed physicists and engineers to miniaturize electronic structures to the limit where finite-size related phenomena start to impact their properties. This book discusses such phenomena and models made for their description. The book starts from the semiclassical description of nonequilibrium effects, details the scattering theory used for quantum transport calculations, and explains the main interference effects. It also describes how to treat fluctuations and correlations, how interactions affect transport through small islands, and how superconductivity modifies these effects. The last two chapters describe new emerging fields related with graphene and nanoelectromechanics. The focus of the book is on the phenomena rather than formalism, but the book still explains in detail the main models constructed for these phenomena. It also introduces a number of electronic devices, including the single-electron transistor, the superconducting tunnel junction refrigerator, and the superconducting quantum bit.

Book Scattering Theory in Mathematical Physics

Download or read book Scattering Theory in Mathematical Physics written by J.A. Lavita and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings contain lectures given at the N.A.T.O. Advanced Study Institute entitled "Scattering Theory in Mathematics and Physics" held in Denver, Colorado, June 11-29, 1973. We have assembled the main series of lectures and some presented by other participants that seemed naturally to complement them. Unfortunately the size of this volume does not allow for a full account of all the contributions made at the Conference; however, all present were pleased by the number and breadth of those topics covered in the informal afternoon sessions. The purpose of the meeting, as reflected in its title, was to examine the single topic of scattering theory in as many of its manifestations as possible, i.e. as a hub of concepts and techniques from both mathematics and physics. The format of all the topics presented here is mathematical. The physical content embraces classical and quantum mechanical scattering, N-body systems and quantum field theoretical models. Left out are such subjects as the so-called analytic S-matrix theory and phenomeno logical models for high energy scattering. We would like to thank the main lecturers for their excellent presentations and written summaries. They provided a focus for the exceptionally strong interaction among the participants and we hope that some of the coherence achieved is reflected in these published notes. We have made no attempt to unify notation.

Book A Modern Course in Transport Phenomena

Download or read book A Modern Course in Transport Phenomena written by David C. Venerus and published by Cambridge University Press. This book was released on 2018-03-15 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating nonequilibrium thermodynamics and kinetic theory, this unique text presents a novel approach to the subject of transport phenomena.

Book Transport Phenomena In Combustion

Download or read book Transport Phenomena In Combustion written by SH Chan and published by Taylor & Francis. This book was released on 2024-09-06 with total page 1862 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set presents the proceedings from the 8th International Symposium on Transport Phenomena in Combustion. There are more than 150 chapters that provide an extensive review of topics such as complete numerical simulation of combustion and heat transfer in furnaces and boilers, the interaction of combustion and heat transfer in porous media for low emission, high efficiency applications, industrial combustion technology, experimental and diagnostic methods and active combustion control, and fire research, internal combustion engine, Nox and soot emission.

Book Electron Transport Phenomena In Semiconductors

Download or read book Electron Transport Phenomena In Semiconductors written by B M Askerov and published by World Scientific. This book was released on 1994-03-29 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the first systematic and detailed exposition of the linear theory of the stationary electron transport phenomena in semiconductors. Arbitrary isotropic and anisotropic nonparabolic bands as well as p-Ge-type bands are considered. Phonon drag effect are taken account of in an arbitrary nonquantizing magnetic field. Scattering theory is discussed in detail with account taken of the Bloch wave functions effect. Transport phenomena in the quantizing magnetic field are studied as well as the size effects in thin films. Band structures of the semiconductors and semiconductor compounds of interest are also considered.The main part of the book deals with the three important problems: charge carrier statistics in a semiconductor, classical and quantum theory of the electron transport phenomena. All the theoretical results considered as well as the validity conditions are presented in the form which may be directly used to interpret experimental data.

Book Introduction to Modeling of Transport Phenomena in Porous Media

Download or read book Introduction to Modeling of Transport Phenomena in Porous Media written by Jacob Bear and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to provide the theoretical background to engineers and scientists engaged in modeling transport phenomena in porous media, in connection with various engineering projects, and to serve as a text for senior and graduate courses on transport phenomena in porous media. Such courses are taught in various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricultural engineering and soil science. In these disciplines, problems are encountered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often the porous material contains several fluid phases, and the various extensive quantities are transported simultaneously throughout the multiphase system. In all these disciplines, management decisions related to a system's development and its operation have to be made. To do so, the 'manager', or the planner, needs a tool that will enable him to forecast the response of the system to the implementation of proposed management schemes. This forecast takes the form of spatial and temporal distributions of variables that describe the future state of the considered system. Pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, and sometime for a component of a phase, may serve as examples of state variables. The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real (porous medium) system that approximately simulates the excitation-response relations of the latter.

Book Carrier Scattering in Metals and Semiconductors

Download or read book Carrier Scattering in Metals and Semiconductors written by V.F. Gantmakher and published by Elsevier. This book was released on 2012-12-02 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental data. The subjects dealt with include: - electronic transport theory based on the test-particle and correlation-function concepts; - scattering by phonons, impurities, surfaces, magnons, dislocations, electron-electron scattering and electron temperature; - two-phonon scattering, spin-flip scattering, scattering in degenerate and many-band models.