EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sample Extraction and Processing in Microfluidic DNA Analysis Devices

Download or read book Sample Extraction and Processing in Microfluidic DNA Analysis Devices written by Rongsheng Lin and published by . This book was released on 2005 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microfluidic DNA Sample Preparation Method and Device

Download or read book Microfluidic DNA Sample Preparation Method and Device written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Manipulation of DNA molecules in solution has become an essential aspect of genetic analyses used for biomedical assays, the identification of hazardous bacterial agents, and in decoding the human genome. Currently, most of the steps involved in preparing a DNA sample for analysis are performed manually and are time, labor, and equipment intensive. These steps include extraction of the DNA from spores or cells, separation of the DNA from other particles and molecules in the solution (e.g. dust, smoke, cell/spore debris, and proteins), and separation of the DNA itself into strands of specific lengths. Dielectrophoresis (DEP), a phenomenon whereby polarizable particles move in response to a gradient in electric field, can be used to manipulate and separate DNA in an automated fashion, considerably reducing the time and expense involved in DNA analyses, as well as allowing for the miniaturization of DNA analysis instruments. These applications include direct transport of DNA, trapping of DNA to allow for its separation from other particles or molecules in the solution, and the separation of DNA into strands of varying lengths.

Book Electrokinetically driven Micofluidic Devices for DNA Extraction and Analysis

Download or read book Electrokinetically driven Micofluidic Devices for DNA Extraction and Analysis written by Roberto Venditti and published by . This book was released on 2006 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on electrokinetically-driven microfluidic devices for DNA analysis. These are designed, optimized via numerical simulation, and experimentally tested. Processes considered include solid phase extraction (SPE) of DNA, and DNA hybridization for the detection of single-nucleotide polymorphism (SNP) genetic mutations. Also included is an experimental analysis of the influence of temperature on the zeta potential parameter (and microchannel flow velocity). The SPE device was successful with input samples of pre-purified lambda-DNA and whole HeLa cancer cells, with a 68% maximum efficiency. The DNA hybridization device was capable of detecting the SNP associated with the childhood disease, Spinal Muscular Atrophy, using both pre-purified and polymerase chain reaction (PCR)-amplified DNA. Zeta potential experiments concluded that many buffers commonly-used in microfluidic applications experience a strong dependence on temperature, contrary to common treatment of this variable. Failure to compensate for this can result in underestimation of in-channel flow velocity as high as 30%.

Book Algorithms for Sample Preparation with Microfluidic Lab on Chip

Download or read book Algorithms for Sample Preparation with Microfluidic Lab on Chip written by Sukanta Bhattacharjee and published by CRC Press. This book was released on 2022-09-01 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent microfluidic technologies have brought a complete paradigm shift in automating biochemical processing on a tiny lab-on-chip (a.k.a. biochip) that replaces expensive and bulky instruments traditionally used in implementing bench-top laboratory protocols. Biochips have already made a profound impact on various application domains such as clinical diagnostics, DNA analysis, genetic engineering, and drug discovery, among others. They are capable of precisely manipulating micro-/pico-liter quantities of fluids, and provide integrated support for mixing, storage, transportation, and sensing, on-chip. In almost all bioprotocols, sample preparation plays an important role, which includes dilution and mixing of several fluids satisfying certain volumetric ratios. However, designing algorithms that minimize reactant-cost and sample-preparation time suited for microfluidic chips poses a great challenge from the perspective of protocol mapping, scheduling, and physical design. Algorithms for Sample Preparation with Microfluidic Lab-on-Chip attempts to bridge the widening gap between biologists and engineers by introducing, from the fundamentals, several state-of-the-art computer-aided-design (CAD) algorithms for sample preparation with digital and flow-based microfluidic biochips. Technical topics discussed in the book include: Basics of digital and flow-based microfluidic lab-on-chipComprehensive review of state-of-the-art sample preparation algorithmsSample-preparation algorithms for digital microfluidic lab-on-chipSample-preparation algorithms for flow-based microfluidic lab-on-chip

Book DNA Purification in Microfluidic Systems for Clinical and Forensic Application

Download or read book DNA Purification in Microfluidic Systems for Clinical and Forensic Application written by Joan Marie Bienvenue and published by . This book was released on 2007 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microfluidic Devices for Biomedical Applications

Download or read book Microfluidic Devices for Biomedical Applications written by Xiujun (James) Li and published by Woodhead Publishing. This book was released on 2021-08-05 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic Devices for Biomedical Applications, Second Edition provides updated coverage on the fundamentals of microfluidics, while also exploring a wide range of medical applications. Chapters review materials and methods, microfluidic actuation mechanisms, recent research on droplet microfluidics, applications in drug discovery and controlled-delivery, including micro needles, consider applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds, and cover the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. This book is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. - Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores a wide range of medical applications - Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies - Details applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and its role in developing tissue scaffolds, and stem cell engineering

Book Microfluidic Devices for Forensic DNA Analysis

Download or read book Microfluidic Devices for Forensic DNA Analysis written by Jayna J. Shah and published by . This book was released on 2007 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The development of integrated, miniaturized, and portable DNA analysis systems is crucial to alleviate massive backlog of unanalyzed samples and to address ever increasing demand for these assays. This thesis work contributes towards the development of a fully integrated microdevice capable of 'sample in -- answer out' for forensic DNA analysis. Specifically, this work describes the development of rapid and robust fabrication protocol for solvent-actuated bonding of polymeric thermoplastic substrates at room temperature, the development of microchannel wall coating strategies to eliminate analyte-wall interactions for high resolution separation of single-stranded DNA, and the characterization of a thin-film planar microwave transmission line for microfluidic heating applications. The solvent-actuated bonding protocol was based on the difference in capillary forces between the microchannel and the interstitial space between the surfaces of the two substrates to be bonded. This force differential wicked the bonding solvent into the gap between the substrates causing them to bond. The technique was implemented by placing the two substrates under moderate pressure, applying a moderate pneumatic vacuum to the fluidic channel, and introducing tens of microliter of bonding solvent through one end of the fluidic channel. The effect of bonding solvent on the dimensions of the microchannel was analyzed, and the mechanical robustness of the bonded devices was also characterized. Electrophoretic separation of single-stranded DNA (ssDNA) was successfully performed to demonstrate the functionality of these devices. To enhance ssDNA separation performance, schemes to modify poly(methyl methacrylate) (PMMA) -- the primary substrate used in this work -- were explored. This two step process consisted of altering surface hydrophilicity via surface activation using either nitric acid or UV/ozone followed by coating the surfaces with adsorptive polymers. Contact-angle measurements of the pristine and modified PMMA substrates were performed to quantify the change in wettability of the surface. Twofold increase in the separation efficiency was achieved by implementing these surface passivation strategies. Finally, the use of a thin-film planar microwave transmission line as a microwave power source was investigated for on-chip microwave heating of fluids. The microwave characterization data was used to develop a first-order analytic model of the microwave power absorption. The model was used to understand microwave power flow through the device and to calculate the fraction of the incident power absorbed in the fluid. Additionally, a fit of the predicted temperature obtained using this model to the measured temperature was performed to evaluate efficiency of this heating method"--Abstract.

Book Microfluidic DNA Extraction and Purification from Forensic Samples

Download or read book Microfluidic DNA Extraction and Purification from Forensic Samples written by Eugene Tan and published by . This book was released on 2015-02-16 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Book Microfluidics and Lab on a chip

Download or read book Microfluidics and Lab on a chip written by Andreas Manz and published by Royal Society of Chemistry. This book was released on 2020-09-24 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic technology is revolutionising a number of scientific fields, including chemistry, biology, diagnostics, and engineering. The ability to manipulate fluids and objects within networks of micrometre-scale channels allows reductions in processing and analysis times, reagent and sample consumption, and waste production, whilst allowing fine control and monitoring of chemical or biological processes. The integration of multiple components and processes enable “lab-on-a-chip” devices and “micro total analysis systems” that have applications ranging from analytical chemistry, organic synthesis, and clinical diagnostics to cell biology and tissue engineering. This concise, easy-to-read book is perfectly suited for instructing newcomers on the most relevant and important aspects of this exciting and dynamic field, particularly undergraduate and postgraduate students embarking on new studies, or for those simply interested in learning about this widely applicable technology. Written by a team with more than 20 years of experience in microfluidics research and teaching, the book covers a range of topics and techniques including fundamentals (e.g. scaling laws and flow effects), microfabrication and materials, standard operations (e.g. flow control, detection methods) and applications. Furthermore, it includes questions and answers that provide for the needs of students and teachers in the area.

Book Microfluidics and Nanofluidics Handbook

Download or read book Microfluidics and Nanofluidics Handbook written by Sushanta K. Mitra and published by CRC Press. This book was released on 2016-04-19 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive handbook presents fundamental aspects, fabrication techniques, introductory materials on microbiology and chemistry, measurement techniques, and applications of microfluidics and nanofluidics. The second volume focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals.

Book Label Free Biosensing

    Book Details:
  • Author : Michael J. Schöning
  • Publisher : Springer
  • Release : 2018-07-20
  • ISBN : 3319752200
  • Pages : 485 pages

Download or read book Label Free Biosensing written by Michael J. Schöning and published by Springer. This book was released on 2018-07-20 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume summarizes the state-of-the-art technologies, key advances and future trends in the field of label-free biosensing. It provides detailed insights into the different types of solid-state, label-free biosensors, their underlying transducer principles, advanced materials utilized, device-fabrication techniques and various applications. The book offers graduate students, academic researchers, and industry professionals a comprehensive source of information on all facets of label-free biosensing and the future trends in this flourishing field. Highlights of the subjects covered include label-free biosensing with: · semiconductor field-effect devices such as nanomaterial-modified capacitive electrolyte-insulator-semiconductor structures, silicon nanowire transistors, III-nitride semiconductor devices and light-addressable potentiometric sensors · impedimetric biosensors using planar and 3D electrodes · nanocavity and solid-state nanopore devices · carbon nanotube and graphene/graphene oxide biosensors · electrochemical biosensors using molecularly imprinted polymers · biomimetic sensors based on acoustic signal transduction · enzyme logic systems and digital biosensors based on the biocomputing concept · heat-transfer as a novel transducer principle · ultrasensitive surface plasmon resonance biosensors · magnetic biosensors and magnetic imaging devices

Book Microfluidics and Nanofluidics Handbook  2 Volume Set

Download or read book Microfluidics and Nanofluidics Handbook 2 Volume Set written by Sushanta K. Mitra and published by CRC Press. This book was released on 2011-09-20 with total page 1767 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, two-volume handbook on Microfluidics and Nanofluidics, this text covers fundamental aspects, fabrication techniques, introductory materials on microbiology and chemistry, measurement techniques, and applications with special emphasis on the energy sector. Each chapter begins with introductory coverage to a subject and then narrows in on advanced techniques and concepts, thus making it valuable to students and practitioners. The author pays special attention to applications of microfluidics in the energy sector and provides insight into the world of opportunities nanotechnology has to offer. Figures, tables, and equations to illustrate concepts.

Book Microfluidics for Cells and Other Organisms

Download or read book Microfluidics for Cells and Other Organisms written by Danny van Noort and published by MDPI. This book was released on 2019-10-23 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics-based devices play an important role in creating realistic microenvironments in which cell cultures can thrive. They can, for example, be used to monitor drug toxicity and perform medical diagnostics, and be in a static-, perfusion- or droplet-based device. They can also be used to study cell-cell, cell-matrix or cell-surface interactions. Cells can be either single cells, 3D cell cultures or co-cultures. Other organisms could include bacteria, zebra fish embryo, C. elegans, to name a few.

Book DNA Extraction by Isotachophoresis in a Microfluidic Channel

Download or read book DNA Extraction by Isotachophoresis in a Microfluidic Channel written by and published by . This book was released on 2011 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological assays have many applications. For example, forensics personnel and medical professionals use these tests to diagnose diseases and track their progression or identify pathogens and the host response to them. One limitation of these tests, however, is that most of them target only one piece of the sample - such as bacterial DNA - and other components (e.g. host genomic DNA) get in the way, even though they may be useful for different tests. To address this problem, it would be useful to extract several different substances from a complex biological sample - such as blood - in an inexpensive and efficient manner. This summer, I worked with Maxim Shusteff at Lawrence Livermore National Lab on the Rapid Automated Sample Prep project. The goal of the project is to solve the aforementioned problem by creating a system that uses a series of different extraction methods to extract cells, bacteria, and DNA from a complex biological sample. Biological assays can then be run on purified output samples. In this device, an operator could input a complex sample such as blood or saliva, and would receive separate outputs of cells, bacteria, viruses, and DNA. I had the opportunity to work this summer with isotachophoresis (ITP), a technique that can be used to extract nucleic acids from a sample. This technique is intended to be the last stage of the purification device. Isotachophoresis separates particles based on different electrophoretic mobilities. This technique is convenient for out application because free solution DNA mobility is approximately equal for DNA longer than 300 base pairs in length. The sample of interest - in our case DNA - is fed into the chip with streams of leading electrolyte (LE) and trailing electrolyte (TE). When an electric field is applied, the species migrate based on their electrophoretic mobilities. Because the ions in the leading electrolyte have a high electrophoretic mobility, they race ahead of the slower sample and trailing electrolyte ions. Conversely, the trailing electrolyte ions have a slow electrophoretic mobility, so they lag behind the sample, thus trapping the species of interest between the LE and TE streams. In a typical isotachophoresis configuration, the electric field is applied in a direction parallel to the direction of flow. The species then form bands that stretch across the width of the channel. A major limitation of that approach is that only a finite amount of sample can be processed at once, and the sample must be processed in batches. For our purposes, a form of free-flow isotachophoresis is more convenient, where the DNA forms a band parallel to the edges of the channel. To achieve this, in our chip, the electric field is applied transversely. This creates a force perpendicular to the direction of flow, which causes the different ions to migrate across the flow direction. Because the mobility of the DNA is between the mobility of the leading and the trailing electrolyte, the DNA is focused in a tight band near the center of the channel. The stream of DNA can then be directed to a different output to produce a highly concentrated outlet stream without batch processing. One hurdle that must be overcome for successful ITP is isolating the electrochemical reactions that result from the application of high voltage for the actual process of isotachophoresis. The electrochemical reactions that occur around metal electrodes produce bubbles and pH changes that are detrimental to successful ITP. The design of the chips we use incorporates polyacrylamide gels to serve as electrodes along the central channel. For our design, the metal electrodes are located away from the chip, and high conductivity buffer streams carry the potential to the chip, functioning as a 'liquid electrode.' The stream then runs alongside a gel barrier. The gel electrode permits ion transfer while simultaneously isolating the separation chamber from any contaminants in the outer, 'liquid electrode' streams. The difference in potential from one side of the chip to the other creates an electric field. This field traverses the inner, separation channel, containing the leading electrolyte, the trailing electrolyte, and the sample of interest (DNA). To increase the ease of use of the chips, a newer chip design has been fabricated. This design has wire electrodes integrated on the chip, rather than elsewhere. To keep the pH changes and bubbling isolated from the separation channel, the chip contains deeper wells near the electrodes so that the flowing buffer can wash away any gases that form around the electrode. This design is significantly more compact because it eliminates the cumbersome electrode boxes. Eliminating the electrode boxes also decreases the required voltage, making the experiments safer. This happens because when the 'liquid electrode' streams travel through small diameter tubing, they lose much of their voltage due to the electrical resistance of the fluid in the tubing.

Book Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques

Download or read book Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques written by James P. Landers and published by CRC Press. This book was released on 2007-12-18 with total page 1598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this bestselling work continues to offer state-of-the-art information on the development and employment of capillary electrophoresis. With special emphasis on microseparations and microfluidics, it features new chapters describing the use of microchip electrophoresis and associated microtechniques, with a focus on the extraordinary breadth of work undertaken to expand CE methodologies in recent years. Enhanced by contributions from leading international experts, the Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, Third Edition remains a seminal reference for the chemistry, biology, and engineering fields.

Book Microfluidic Techniques

    Book Details:
  • Author : Shelley D. Minteer
  • Publisher : Springer Science & Business Media
  • Release : 2008-02-04
  • ISBN : 1592599974
  • Pages : 245 pages

Download or read book Microfluidic Techniques written by Shelley D. Minteer and published by Springer Science & Business Media. This book was released on 2008-02-04 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hands-on researchers review the principles behind successful miniaturization and describe the key techniques for miniaturizing large-scale biochemical and bioanalytical methods for microchip analysis. The authors cover not only the most popular methods for the fabrication of microchips (photolithography, laser ablation, and soft lithography), but also microfluidic techniques for such bioanalytical assays and bioprocesses as DNA analysis, PCR, immunoassays, and cell reactors. Highlights include PCR on a microchip, microscale cell culturing, and the study of cellular processes on a microchip. The protocols offer step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.

Book Integrated DNA Extraction and Amplification on a Microfluidic Device

Download or read book Integrated DNA Extraction and Amplification on a Microfluidic Device written by Kirsty Jane Shaw and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: An evaluation of DNA extraction and amplification performed in microfluidic systems was carried out, with the aim of integrating the two processes in a single microfluidic device. This integrated device will then be incorporated upstream of capillary gel electrophoresis and fluorescence-based detection for development of a completely integrated genetic analysis system. DNA extraction was performed using a silica substrate with both hydrodynamic and electro-osmotic pumping (EOP), resulting in maximum DNA extraction efficiencies of 82% and 52% respectively under optimised conditions. While the DNA extraction efficiency was lower using EOP, this method eliminates the need for external pumps and ensures easier mechanical connection to the microfluidic device. The use of thermally activated silica monoliths as the solid-phase resulted in superior DNA extraction efficiencies compared to when photo-initiated monoliths and silica beads were used. DNA amplification of up to nine forensically relevant loci was successfully achieved on the microfluidic device in volumes as low as 1.1 microlitres using Peltier heating. A combination of silanisation and dynamic passivation was required to prevent PCR inhibition resulting from DNA polymerase adsorption. A custom-built microwave heating system was also evaluated, which was capable of heating and cooling rates of 65°C/second and 58°C/second, respectively. EOP was used in the generation of an integrated microfluidic device, for DNA extraction and amplification. The silica monolith used as the solid-phase for DNA extraction also acted as a pump for electrokinetic movement. All necessary reagents for carrying out both DNA extraction and amplification were encapsulated in agarose gel and pre-loaded onto the microfluidic device creating a self-contained, ready-to-use system. Following addition of the biological sample to the microfluidic device, all electrokinetic movement and thermal cycling was controlled using a custom-built operating system.