EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoscale Semiconductor Lasers

Download or read book Nanoscale Semiconductor Lasers written by Cunzhu Tong and published by Elsevier. This book was released on 2019-08-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies. - Provides an overview of the active field of nanostructured lasers, illustrating the latest topics and applications - Demonstrates how to connect different classes of material to specific applications - Gives an overview of several approaches to confine and control light emission and amplification using nanostructured materials and nano-scale cavities

Book Comprehensive Nanoscience and Technology

Download or read book Comprehensive Nanoscience and Technology written by and published by Academic Press. This book was released on 2010-10-29 with total page 2785 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.

Book Integrated Lasers on Silicon

Download or read book Integrated Lasers on Silicon written by Charles Cornet and published by Elsevier. This book was released on 2016-07-14 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Lasers on Silicon provides a comprehensive overview of the state-of-the-art use of lasers on silicon for photonic integration. The authors demonstrate the need for efficient laser sources on silicon, motivated by the development of on-board/on-chip optical interconnects and the different integration schemes available. The authors include detailed descriptions of Group IV-based lasers, followed by a presentation of the results obtained through the bonding approach (hybrid III-V lasers). The monolithic integration of III-V semiconductor lasers are explored, concluding with a discussion of the different kinds of cavity geometries benchmarked with respect to their potential integration on silicon in an industrial environment. - Features a clear description of the advantages, drawbacks, and challenges of laser integration on silicon - Serves as a staple reference in the general field of silicon photonics - Focuses on the promising developments of hybrid and monolithic III-V lasers on silicon, previously unreviewed - Discusses the different kinds of cavity geometries benchmarked with respect to their potential integration on silicon in an industrial environment

Book Quantum Dot Lasers

    Book Details:
  • Author : Victor Mikhailovich Ustinov
  • Publisher :
  • Release : 2003
  • ISBN : 9780198526797
  • Pages : 306 pages

Download or read book Quantum Dot Lasers written by Victor Mikhailovich Ustinov and published by . This book was released on 2003 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book addresses issues associated with physics and technology of injection lasers based on self-organized quantum dots. Fundamental and technological aspects of quantum dot edge-emitting lasers and VCSELs, their current status and future prospects are summarized and reviewed. Basic principles of QD formation using self-organization phenomena are reviewed. Structural and optical properties of self-organized QDs are considered with a number of examples in different material systems. Recent achievements in controlling the QD properties including the effects of vertical stacking, changing the matrix bandgap and the surface density of QDs are reviewed. The authors focus on the use of self-organized quantum dots in laser structures, fabrication and characterization of edge and surface emitting diode lasers, their properties and optimization with special attention paid to the relationship between structural and electronic properties of QDs and laser characteristics. The threshold and power characteristics of the state-of-the-art QD lasers are demonstrated. Issues related to the long-wavelength (1.3-mm) lasers on a GaAs substrate are also addressed and recent results on InGaAsN-based diode lasers presented for the purpose of comparison.

Book Semiconductor Nanodevices

Download or read book Semiconductor Nanodevices written by David Ritchie and published by Elsevier. This book was released on 2021-10-24 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Nanodevices: Physics, Technology and Applications explores recent advances in the field. The behaviour of these devices is controlled by regions of nanoscale dimensions which typically determine the local density of electronic states and lead to the observation of a range of quantum effects with significant potential for exploitation. The book opens with an introduction describing the development of this research field over the past few decades which contrasts quantum-controlled devices to conventional nanoscale electronic devices where an emphasis has often been placed on minimising quantum effects. This introduction is followed by seven chapters describing electrical nanodevices and five chapters describing opto-electronic nanodevices; individual chapters review important recent advances. These chapters include specific fabrication details for the structures and devices described as well as a discussion of the physics made accessible. It is an important reference source for physicists, materials scientists and engineers who want to learn more about how semiconductor-based nanodevices are being developed for both science and potential industrial applications. The section on electrical devices includes chapters describing the study of electron correlation effects using transport in quantum point contacts and tunnelling between one-dimensional wires; the high-frequency pumping of single electrons; thermal effects in quantum dots; the use of silicon quantum dot devices for qubits and quantum computing; transport in topological insulator nanoribbons and a comprehensive discussion of noise in electrical nanodevices. The optical device section describes the use of self-assembled III-V semiconductor nanostructures embedded in devices for a range of applications, including quantum dots for single and entangled photon sources, quantum dots and nanowires in lasers and quantum dots in solar cells. - Explores the major industrial applications of semiconductor nanodevices - Explains fabrication techniques for the production of semiconductor nanodevices - Assesses the challenges for the mass production of semiconductor nanodevices

Book Room Temperature Continuous Wave InGaAsN Quantum Well Vertical Cavity Lasers Emitting at 1 3 Um

Download or read book Room Temperature Continuous Wave InGaAsN Quantum Well Vertical Cavity Lasers Emitting at 1 3 Um written by and published by . This book was released on 2000 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

Book Future Directions in Silicon Photonics

Download or read book Future Directions in Silicon Photonics written by and published by Academic Press. This book was released on 2019-08-16 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future Directions in Silicon Photonics, Volume 101 in the Semiconductors and Semimetals series, highlights new advances in the field, with this updated volume presenting the latest developments as discussed by esteemed leaders in the field silicon photonics. Provides the authority and expertise of leading contributors from an international board of authors Represents the latest release in the Semiconductors and Semimetals series Includes the latest information on Silicon Photonics

Book Quantum Dot Lasers on Silicon

Download or read book Quantum Dot Lasers on Silicon written by Bozhang Dong and published by Springer Nature. This book was released on 2023-02-04 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides guidelines and design rules for developing high-performance, low-cost, and energy-efficient quantum-dot (QD) lasers for silicon photonic integrated circuits (PIC), optical frequency comb generation, and quantum information systems. To this end, the nonlinear properties and dynamics of QD lasers on silicon are investigated in depth by both theoretical analysis and experiment. This book aims at addressing four issues encountered in developing silicon PIC: 1) The instability of laser emission caused by the chip-scale back-reflection. During photonic integration, the chip-scale back-reflection is usually responsible for the generation of severe instability (i.e., coherence collapse) from the on-chip source. As a consequence, the transmission performance of the chip could be largely degraded. To overcome this issue, we investigate the nonlinear properties and dynamics of QD laser on Si in this book to understand how can it be applied to isolator-free photonic integration in which the expensive optical isolator can be avoided. Results show that the QD laser exhibits a high degree of tolerance for chip-scale back-reflections in absence of any instability, which is a promising solution for isolator-free applications. 2) The degradation of laser performance at a high operating temperature. In this era of Internet-of-Thing (IoT), about 40% of energy is consumed for cooling in the data center. In this context, it is important to develop a high-temperature continuous-wave (CW) emitted laser source. In this book, we introduce a single-mode distributed feedback (DFB) QD laser with a design of optical wavelength detuning (OWD). By taking advantage of the OWD technique and the high-performance QD with high thermal stability, all the static and dynamical performances of the QD device are improved when the operating temperature is high. This study paves the way for developing uncooled and isolator-free PIC. 3) The limited phase noise level and optical bandwidth of the laser are the bottlenecks for further increasing the transmission capacity. To improve the transmission capacity and meet the requirement of the next generation of high-speed optical communication, we introduce the QD-based optical frequency comb (OFC) laser in this book. Benefiting from the gain broadening effect and the low-noise properties of QD, the OFC laser is realized with high optical bandwidth and low phase noise. We also provide approaches to further improve the laser performance, including the external optical feedback and the optical injection. 4) Platform with rich optical nonlinearities is highly desired by future integrated quantum technologies. In this book, we investigate the nonlinear properties and four-wave mixing (FWM) of QD laser on Si. This study reveals that the FWM efficiency of QD laser is more than ten times higher than that of quantum-well laser, which gives insight into developing a QD-based silicon platform for quantum states of light generation. Based on the results in this book, scientists, researchers, and engineers can come up with an informed judgment in utilizing the QD laser for applications ranging from classical silicon PIC to integrated quantum technologies.

Book Handbook of Lasers

Download or read book Handbook of Lasers written by Marvin J. Weber and published by CRC Press. This book was released on 2019-04-30 with total page 1224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lasers continue to be an amazingly robust field of activity. Anyone seeking a photon source is now confronted with an enormous number of possible lasers and laser wavelengths to choose from, but no single, comprehensive source to help them make that choice. The Handbook of Lasers provides an authoritative compilation of lasers, their properties, and original references in a readily accessible form. Organized by lasing media-solids, liquids, and gases-each section is subdivided into distinct laser types. Each type carries a brief description, followed by tables listing the lasing element or medium, host, lasing transition and wavelength, operating properties, primary literature citations, and, for broadband lasers, reported tuning ranges. The importance and value of the Handbook of Lasers cannot be overstated. Serving as both an archive and as an indicator of emerging trends, it reflects the state of knowledge and development in the field, provides a rapid means of obtaining reference data, and offers a pathway to the literature. It contains data useful for comparison with predictions and for developing models of processes, and may reveal fundamental inconsistencies or conflicts in the data.

Book VLSI Micro  and Nanophotonics

Download or read book VLSI Micro and Nanophotonics written by El-Hang Lee and published by CRC Press. This book was released on 2018-09-03 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addressing the growing demand for larger capacity in information technology, VLSI Micro- and Nanophotonics: Science, Technology, and Applications explores issues of science and technology of micro/nano-scale photonics and integration for broad-scale and chip-scale Very Large Scale Integration photonics. This book is a game-changer in the sense that it is quite possibly the first to focus on "VLSI Photonics". Very little effort has been made to develop integration technologies for micro/nanoscale photonic devices and applications, so this reference is an important and necessary early-stage perspective on this field. New demand for VLSI photonics brings into play various technological and scientific issues, as well as evolutionary and revolutionary challenges—all of which are discussed in this book. These include topics such as miniaturization, interconnection, and integration of photonic devices at micron, submicron, and nanometer scales. With its "disruptive creativity" and unparalleled coverage of the photonics revolution in information technology, this book should greatly impact the future of micro/nano-photonics and IT as a whole. It offers a comprehensive overview of the science and engineering of micro/nanophotonics and photonic integration. Many books on micro/nanophotonics focus on understanding the properties of individual devices and their related characteristics. However, this book offers a full perspective from the point of view of integration, covering all aspects of benefits and advantages of VLSI-scale photonic integration—the key technical concept in developing a platform to make individual devices and components useful and practical for various applications.

Book The Physics of Semiconductors

Download or read book The Physics of Semiconductors written by Marius Grundmann and published by Springer. This book was released on 2015-12-24 with total page 998 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 3rd edition of this successful textbook contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, carbon-based nanostructures and transparent conductive oxides. The text derives explicit formulas for many results to support better understanding of the topics. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from a highly regarded two-semester course. In the third edition several topics are extended and treated in more depth including surfaces, disordered materials, amorphous semiconductors, polarons, thermopower and noise. More than 1800 references guide the reader to historic and current literature including original and review papers and books.

Book Trends in Nano  and Micro Cavities

Download or read book Trends in Nano and Micro Cavities written by O'Dae Kwon and published by Bentham Science Publishers. This book was released on 2011-09-10 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ebook is a collection of cutting edge articles from the 2009 Workshop on Microcavities and their Applications (WOMA 2009). It gives readers an overview of state-of-the-art opto electronic research on nano and micro cavities presented by leading exper

Book Room temperature  Continuous wave Quantum Cascade Lasers in the First and Second Atmospheric Windows

Download or read book Room temperature Continuous wave Quantum Cascade Lasers in the First and Second Atmospheric Windows written by Zhijun Liu and published by . This book was released on 2008 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Cascade (QC) lasers are mid-infrared semiconductor light sources which attract considerable interest for mid-infrared sensor systems, especially for high sensitivity and selectivity detection of chemical vapors in security, medical, and environmental applications. For some of these practical sensing applications, high temperature (room temperature and above), high power, continuous-wave (CW) operation is desirable for the purposes of simplifying the system and increasing the sensitivity. However, due to the thermal effects associated with the high threshold and low wall-plug efficiency, the performance of QC lasers is severely limited at high temperature. To overcome this problem, this dissertation shows how to optimize the QC laser performance through high gain active region and low loss waveguide designs, and advanced device processing and packaging for better thermal management.

Book Semiconductor Lasers

Download or read book Semiconductor Lasers written by Alexei Baranov and published by Elsevier. This book was released on 2013-04-23 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor lasers have important applications in numerous fields, including engineering, biology, chemistry and medicine. They form the backbone of the optical telecommunications infrastructure supporting the internet, and are used in information storage devices, bar-code scanners, laser printers and many other everyday products. Semiconductor lasers: Fundamentals and applications is a comprehensive review of this vital technology.Part one introduces the fundamentals of semiconductor lasers, beginning with key principles before going on to discuss photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation. Part two then reviews applications of visible and near-infrared emitting lasers. Nonpolar and semipolar GaN-based lasers, advanced self-assembled InAs quantum dot lasers and vertical cavity surface emitting lasers are all considered, in addition to semiconductor disk and hybrid silicon lasers. Finally, applications of mid- and far-infrared emitting lasers are the focus of part three. Topics covered include GaSb-based type I quantum well diode lasers, interband cascade and terahertz quantum cascade lasers, whispering gallery mode lasers and tunable mid-infrared laser absorption spectroscopy.With its distinguished editors and international team of expert contributors, Semiconductor lasers is a valuable guide for all those involved in the design, operation and application of these important lasers, including laser and telecommunications engineers, scientists working in biology and chemistry, medical practitioners, and academics working in this field. - Provides a comprehensive review of semiconductor lasers and their applications in engineering, biology, chemistry and medicine - Discusses photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation - Reviews applications of visible and near-infrared emitting lasers and mid- and far-infrared emitting lasers

Book Investigation of Quantum Dot Lasers

Download or read book Investigation of Quantum Dot Lasers written by and published by . This book was released on 2004 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first demonstration of room-temperature operation of self-assembled quantum dot (QD) lasers about a decade ago, there have been great strides in improving the characteristics and performance of these lasers. They currently match or surpass the performance of quantum well lasers. However, there are unique problems that limit the performance of conventional separate confinement heterostructure (SCH) QD lasers compared to what is expected from "ideal" lasers with near singular density of states. In the study reported here, unique insights and solutions to these problems are demonstrated and reliable quantum dot lasers that surpass quantum well lasers in performance characteristics are developed. By utilizing the concepts of tunnel injection and p-doping, 1.0 micrometer and 1.3 micrometer quantum dot lasers with high differential gain, modulation bandwidth ^25GHz, a factor less than unity, and zero chirp have been achieved. This final report summarizes the successful design, fabrication, and characterization of high performance 1.0 micrometer QD-Distributed-Feedback (DFB) lasers, 1.0 micrometer QD-Tunnel-Injection lasers (undoped and p-doped), and 1.3 micrometer p-doped QD lasers. The authors have demonstrated record performance of these unique devices in terms of differential gain, modulation bandwidth, temperature dependence, chirp, and linewidth enhancement factor. (16 figures, 14 refs.).