EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Methods in Transport

Download or read book Computational Methods in Transport written by Frank Graziani and published by Springer Science & Business Media. This book was released on 2006-02-17 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thereexistawiderangeofapplicationswhereasigni?cantfractionofthe- mentum and energy present in a physical problem is carried by the transport of particles. Depending on the speci?capplication, the particles involved may be photons, neutrons, neutrinos, or charged particles. Regardless of which phenomena is being described, at the heart of each application is the fact that a Boltzmann like transport equation has to be solved. The complexity, and hence expense, involved in solving the transport problem can be understood by realizing that the general solution to the 3D Boltzmann transport equation is in fact really seven dimensional: 3 spatial coordinates, 2 angles, 1 time, and 1 for speed or energy. Low-order appro- mations to the transport equation are frequently used due in part to physical justi?cation but many in cases, simply because a solution to the full tra- port problem is too computationally expensive. An example is the di?usion equation, which e?ectively drops the two angles in phase space by assuming that a linear representation in angle is adequate. Another approximation is the grey approximation, which drops the energy variable by averaging over it. If the grey approximation is applied to the di?usion equation, the expense of solving what amounts to the simplest possible description of transport is roughly equal to the cost of implicit computational ?uid dynamics. It is clear therefore, that for those application areas needing some form of transport, fast, accurate and robust transport algorithms can lead to an increase in overall code performance and a decrease in time to solution.

Book Spherical Harmonics Methods for Thermal Radiation Transport

Download or read book Spherical Harmonics Methods for Thermal Radiation Transport written by Ryan G. McClarren and published by . This book was released on 2006 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2001 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 2000 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Foundations of Radiation Hydrodynamics

Download or read book Foundations of Radiation Hydrodynamics written by Dimitri Mihalas and published by Courier Corporation. This book was released on 2013-04-10 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent, informative volume focuses on dynamics of nonradiating fluids, problems involving waves, shocks and stellar winds, physics of radiation, radiation transport, and the dynamics of radiating fluids. 1984 edition.

Book Statistical Mechanics

    Book Details:
  • Author : James Sethna
  • Publisher : OUP Oxford
  • Release : 2006-04-07
  • ISBN : 0191566217
  • Pages : 374 pages

Download or read book Statistical Mechanics written by James Sethna and published by OUP Oxford. This book was released on 2006-04-07 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.

Book Relativistic Hydrodynamics

Download or read book Relativistic Hydrodynamics written by Luciano Rezzolla and published by OUP Oxford. This book was released on 2013-09-26 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solution of the equations, and over to the applications in modern physics and astrophysics. Numerous figures, diagrams, and a variety of exercises aid the material in the book. The most obvious applications of this work range from astrophysics (black holes, neutron stars, gamma-ray bursts, and active galaxies) to cosmology (early-universe hydrodynamics and phase transitions) and particle physics (heavy-ion collisions). It is often said that fluids are either seen as solutions of partial differential equations or as "wet". Fluids in this book are definitely wet, but the mathematical beauty of differential equations is not washed out.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book An Introduction to Reservoir Simulation Using MATLAB GNU Octave

Download or read book An Introduction to Reservoir Simulation Using MATLAB GNU Octave written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2019-08-08 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.

Book Relativistic Hydrodynamics and Magnetohydrodynamics

Download or read book Relativistic Hydrodynamics and Magnetohydrodynamics written by André Lichnerowicz and published by . This book was released on 1967 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Modeling  Simulation and Optimization for Power Engineering and Management

Download or read book Mathematical Modeling Simulation and Optimization for Power Engineering and Management written by Simone Göttlich and published by Springer Nature. This book was released on 2021-02-02 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited monograph offers a summary of future mathematical methods supporting the recent energy sector transformation. It collects current contributions on innovative methods and algorithms. Advances in mathematical techniques and scientific computing methods are presented centering around economic aspects, technical realization and large-scale networks. Over twenty authors focus on the mathematical modeling of such future systems with careful analysis of desired properties and arising scales. Numerical investigations include efficient methods for the simulation of possibly large-scale interconnected energy systems and modern techniques for optimization purposes to guarantee stable and reliable future operations. The target audience comprises research scientists, researchers in the R&D field, and practitioners. Since the book highlights possible future research directions, graduate students in the field of mathematical modeling or electrical engineering may also benefit strongly.

Book The Numerical Modelling of Nonlinear Stellar Pulsations

Download or read book The Numerical Modelling of Nonlinear Stellar Pulsations written by J. Robert Buchler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary meeting has brought together a group of astrophysicists with hands-on experience in the numerical computation of astrophysical fluid dynamics, in particular nonlinear stellar pulsations, and a group of applied mathematicians who are actively engaged with the development of novel and improved numerical methods. The goal of the workshop has been for the astrophysicists to discuss in detail the numerical problems encountered in the modelling of stellar pulsations and for the mathematicians to present a survey of recent developments in numerical techniques. This astrophysical-mathematical intercourse will help the astrophysicists in the future development of more reliable and efficient codes, on the one hand, and it has introduced the mathematicians to an unfamiliar area which is a tough testing ground for their techniques. Since the difficulties encountered are common to other fluid dynamics problems, and are in fact perhaps more severe, fluid dynamicists in other research areas may fmd the results of this workshop of interest as well. Much of our theoretical understanding of the intricate and interesting behavior of variable stars rests on our ability to perform accurate numerical hydrodynamical computations of stellar models. Extensive calculations of nonlinear radial stellar pulsations with the use of increasingly powerful computers are showing more and more clearly that the numerical codes in current use have serious deficiencies.

Book Relativistic Numerical Hydrodynamics

Download or read book Relativistic Numerical Hydrodynamics written by James R. Wilson and published by Cambridge University Press. This book was released on 2003-11-06 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculations of relativistic hydrodynamics are crucial to several areas of current research in the physics of supernovae and stellar collapse. This book provides an overview of the computational framework in which such calculations have been developed, with examples of applications to real physical systems. Beginning with the development of the equations and differencing schemes for special relativistic hydrodynamics, the book stresses the viability of the Euler-Lagrange approach to most astrophysical problems. It details aspects of solving the Einstein equations together with the fluid dynamics for various astrophysical systems in one, two and three dimensions.

Book Hyperbolic Problems

Download or read book Hyperbolic Problems written by Michael Fey and published by . This book was released on 1999 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Equations of Radiation Hydrodynamics

Download or read book The Equations of Radiation Hydrodynamics written by Gerald C. Pomraning and published by Courier Corporation. This book was released on 2005-01-01 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text examines propagation of thermal radiation through a fluid and its effects on the hydrodynamics of fluid motion. Topics include approximate formulations of radiative transfer and relativistic effects of fluid motion; microscopic physics associated with the equation of transfer; inverse Compton scattering; and hydrodynamic description of fluid. 1973 edition.

Book Theoretical Microfluidics

    Book Details:
  • Author : Henrik Bruus
  • Publisher : Oxford University Press
  • Release : 2007-09-27
  • ISBN : 0191528587
  • Pages : pages

Download or read book Theoretical Microfluidics written by Henrik Bruus and published by Oxford University Press. This book was released on 2007-09-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow in complexity, a proper theoretical understanding becomes increasingly important. The basic idea of the book is to provide a self-contained formulation of the theoretical framework of microfluidics, and at the same time give physical motivation and examples from lab-on-a-chip technology. After three chapters introducing microfluidics, the governing equations for mass, momentum and energy, and some basic flow solutions, the following 14 chapters treat hydraulic resistance/compliance, diffusion/dispersion, time-dependent flow, capillarity, electro- and magneto-hydrodynamics, thermal transport, two-phase flow, complex flow patterns and acousto-fluidics, as well as the new fields of opto- and nano-fluidics. Throughout the book simple models with analytical solutions are presented to provide the student with a thorough physical understanding of order of magnitudes and various selected microfluidic phenomena and devices. The book grew out of a set of well-tested lecture notes. It is with its many pedagogical exercises designed as a textbook for an advanced undergraduate or first-year graduate course. It is also well suited for self-study.