EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Rich Quasiparticle Properties of Low Dimensional Systems

Download or read book Rich Quasiparticle Properties of Low Dimensional Systems written by Dr Cheng-Hsueh Yang and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the essential properties of carbon nanotubes and 2D graphene systems. The book focuses on the fundamental excitation properties of a large range of graphene-related materials, presenting a new theoretical framework that couples electronic properties and e-e Coulomb interactions together in order to thoroughly explore Coulomb excitations and decay rates in carbon-nanotube-related systems.

Book Rich Quasiparticle Properties In Layered Graphene related Systems

Download or read book Rich Quasiparticle Properties In Layered Graphene related Systems written by Ming-fa Lin and published by World Scientific. This book was released on 2023-12-27 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book delves into the fascinating world of quasiparticle properties of graphene-related materials. The authors thoroughly explore the intricate effects of intrinsic and extrinsic interactions on the material's properties, while unifying the single-particle and many-particle properties through the development of a theoretical framework. The book covers a wide range of research topics, including long-range Coulomb interactions, dynamic charge density waves, Friedel oscillations and plasmon excitations, as well as optical reflection and transmission spectra of thin films. Also it highlights the crucial roles of inelastic Coulomb scattering and optical scattering in the quasiparticle properties of layered systems, and the impact of crystal symmetry, number of layers, and stacking configuration on their uniqueness. Furthermore, the authors explore the topological properties of quasiparticles, including 2D time-reversal-symmetry protected topological insulators with quantum spin Hall effect, and rhombohedral graphite with Dirac nodal lines. Meanwhile, the book examines the gate potential application for creating topological localized states and shows topological invariants of 2D Dirac fermions, and binary Z2 topological invariants under chiral symmetry. The calculated results are consistent with the present experimental observations, establishing it as a valuable resource for individuals interested in the quasiparticle properties of novel materials.

Book Field Theories for Low Dimensional Condensed Matter Systems

Download or read book Field Theories for Low Dimensional Condensed Matter Systems written by Guiseppe Morandi and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is especially addressed to young researchers in theoretical physics with a basic background in Field Theory and Condensed Matter Physics. The topics were chosen so as to offer the largest possible overlap between the two expertises, selecting a few key problems in Condensed Matter Theory which have been recently revisited within a field-theoretic approach. The presentation of the material is aimed not only at providing the reader with an overview of this exciting frontier area of modern theoretical physics, but also at elucidating most of the tools needed for a technical comprehen sion of the many papers appearing in current issues of physics journals and, hopefully, to enable the reader to tackle research problems in this area of physics. This makes the material a live creature: while not pretending it to be exhaustive, it is tutorial enough to be useful to young researchers as a starting point in anyone of the topics covered in the book.

Book Energy Storage and Conversion Materials

Download or read book Energy Storage and Conversion Materials written by Ngoc Thanh Thuy Tran and published by CRC Press. This book was released on 2023-05-03 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the fundamental properties of a wide range of energy storage and conversion materials, covering mainstream theoretical and experimental studies and their applications in green energy. It presents a thorough investigation of diverse physical, chemical, and material properties of rechargeable batteries, supercapacitors, solar cells, and fuel cells, covering the development of theoretical simulations, machine learning, high-resolution experimental measurements, and excellent device performance. Covers potential energy storage (rechargeable batteries and supercapacitors) and energy conversion (solar cells and fuel cells) materials Develops theoretical predictions and experimental observations under a unified quasi-particle framework Illustrates up-to-date calculation results and experimental measurements Describes successful synthesis, fabrication, and measurements, as well as potential applications and near-future challenges Promoting a deep understanding of basic science, application engineering, and commercial products, this work is appropriate for senior graduate students and researchers in materials, chemical, and energy engineering and related disciplines.

Book Quasiparticle and Optical Properties of Quasi two dimensional Systems

Download or read book Quasiparticle and Optical Properties of Quasi two dimensional Systems written by Felipe Homrich da Jornada and published by . This book was released on 2017 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the experimental isolation of graphene in 2004, there has been tremendous interest in studying quasi-two-dimensional (quasi-2D) systems. These atomically thin materials display a number of unique properties not found in their bulk counterparts, such as large self-energy and excitonic effects due to weaker screening in 2D. However, simple dimensionality arguments alone often fail to give quantitative - and sometimes qualitative - explanation of physical phenomena in these systems. Many low-energy excitation processes in these materials involve length scales comparable to the extent of these materials along the confined direction. Thus, many of these interesting properties are a result of the interplay of the physics of 2 and 3 dimensions. In order to predict quasiparticle and optical properties in these materials, it is therefore highly important to use methods that capture the explicit quasi-2D crystal structure and rely on as little experimental input as possible. Ab initio formalisms are well-tested, mature, and predictive methods for calculating physical properties of systems with arbitrary crystal structure and dimensionality. In particular, the ab initio GW and GW plus Bethe-Salpeter equation (BSE) approaches are reliable methods to compute quasiparticle and optical properties of materials without experimental parameters and for systems with arbitrary electronic structure and dimensionality. In this dissertation, we study the quasiparticle and optical properties of quasi-2D systems, with emphasis on graphene and monolayer transition metal dichalcogenides. This dissertation is divided into three parts. In the first part, we introduce the formalisms that allow us to compute quasiparticle and optical properties of material. We include a brief review of the quasiparticle approximation, and connect it to Green's function methods. We then introduce the GW approximation and the BSE as tools to compute quasiparticle and optical properties of materials, respectively. We include a simplified derivation of these two formalisms in terms of many-body perturbation theory and diagrammatic series. We also review how the GW approximation and the BSE are implemented into ab initio electronic-structure codes, such as BerkeleyGW. In the second part of the dissertation, we show our theoretical works on the quasiparticle and optical properties of quasi-2D systems. We compute the quasiparticle bandstructure, optical absorption spectrum, and excitonic series on monolayer MoS2, a prototypical quasi-2D semiconductor. We also understand the origin of novel physics in these materials, such as the presence of excitonic states that cannot be understood in terms of a 2D hydrogenic model. We understand these unique phenomena in terms of the unique features of the screening in 2D, and also show how this leads to severe challenges in applying the GW and GW-BSE approaches to system with reduced dimensionality. We then develop new methods that efficiently capture these fast variations of the screening, and reduce the computational cost of GW and GW-BSE approaches on these systems by orders of magnitude. Finally, in the third part of the dissertation, we show a variety of projects that are collabo- rations between our theoretical group at Berkeley and various experimental groups. In the first collaboration, we perform a joint work with Prof. Tony Heinz’s experimental group, wherein we demonstrate how excitonic effects on graphene can be tuned by carrier doping. Our work goes beyond the independent-particle picture, and includes, without adjustable parameters, the effect of finite quasiparticle lifetimes due to electron-electron and electron-phonon interactions on the optical absorption of graphene. The second project in this part - a collaboration with the experimental groups of Profs. Mike Crommie and Feng Wang - directly measures the exciton binding energy in MoSe2. Because these measurements are performed on a substrate of bilayer graphene, we develop a new method to include the effect of screening from the substrate into our ab initio formalism. Finally, the third joint theory-experiment work was a collaboration with Prof. Mike Crommie’s group, wherein we compute the quasiparticle properties of few-layer MoSe2 and simulate the corresponding scanning-tunneling spectroscopy curves. Our work shows how the electronic structure of MoSe2 evolves with layer number, and elucidates the role of layer hybridization, self-energy effects, and intrinsic/extrinsic screening in the quasiparticle properties of few-layer transition metal dichalcogenides.

Book Diverse Quasiparticle Properties of Emerging Materials

Download or read book Diverse Quasiparticle Properties of Emerging Materials written by Tran Thi Thu Hanh and published by CRC Press. This book was released on 2022-10-07 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diverse Quasiparticle Properties of Emerging Materials: First-Principles Simulations thoroughly explores the rich and unique quasiparticle properties of emergent materials through a VASP-based theoretical framework. Evaluations and analyses are conducted on the crystal symmetries, electronic energy spectra/wave functions, spatial charge densities, van Hove singularities, magnetic moments, spin configurations, optical absorption structures with/without excitonic effects, quantum transports, and atomic coherent oscillations. Key Features Illustrates various quasiparticle phenomena, mainly covering orbital hybridizations and spin-up/spin-down configurations Mainly focuses on electrons and holes, in which their methods and techniques could be generalized to other quasiparticles, such as phonons and photons Considers such emerging materials as zigzag nanotubes, nanoribbons, germanene, plumbene, bismuth chalcogenide insulators Includes a section on applications of these materials This book is aimed at professionals and researchers in materials science, physics, and physical chemistry, as well as upper-level students in these fields.

Book Chemical Modifications Of Graphene like Materials

Download or read book Chemical Modifications Of Graphene like Materials written by Nguyen Thanh Tien and published by World Scientific. This book was released on 2023-12-27 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene-like materials have attracted considerable interest in the fields of condensed-matter physics, chemistry, and materials science due to their interesting properties as well as the promise of a broad range of applications in energy storage, electronic, optoelectronic, and photonic devices.The contents present the diverse phenomena under development in the grand quasiparticle framework through the first-principles calculations. The critical mechanisms, the orbital hybridizations and spin configurations of graphene-like materials through the chemical adsorptions, intercalations, substitutions, decorations, and heterojunctions, are taken into account. Specifically, the hydrogen-, oxygen-, transition-metal- and rare-earth-dependent compounds are thoroughly explored for the unusual spin distributions. The developed theoretical framework yields concise physical, chemical, and material pictures. The delicate evaluations are thoroughly conducted on the optimal lattices, the atom- and spin-dominated energy bands, the orbital-dependent sub-envelope functions, the spatial charge distributions, the atom- orbital- and spin-projected density of states, the spin densities, the magnetic moments, and the rich optical excitations. All consistent quantities are successfully identified by the multi-orbital hybridizations in various chemical bonds and guest- and host-induced spin configurations.The scope of the book is sufficiently broad and deep in terms of the geometric, electronic, magnetic, and optical properties of 3D, 2D, 1D, and 0D graphene-like materials with different kinds of chemical modifications. How to evaluate and analyze the first-principles results is discussed in detail. The development of the theoretical framework, which can present the diversified physical, chemical, and material phenomena, is obviously illustrated for each unusual condensed-matter system. To achieve concise physical and chemical pictures, the direct and close combinations of the numerical simulations and the phenomenological models are made frequently available via thorough discussions. It provides an obvious strategy for the theoretical framework, very useful for science and engineering communities.

Book Quasiparticle Energy and Excitons in Two dimensional Structures

Download or read book Quasiparticle Energy and Excitons in Two dimensional Structures written by Yufeng Liang and published by . This book was released on 2014 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional materials, such as graphene-related structures, transition metal dichalcogenides, are attracting enormous interest in nowadays condensed matter physics. They not only serve as ideal testbeds for rich physics in reduced-dimensional electron systems but are also of particular importance in nanoelectronic technology. Their electronic, transport, and optical properties are largely determined by the nature of excited states, such as quasiparticles and excitons. Understanding how these excited states emerge from a many-electron system is an intriguing intellectual process, which gives insight into experimental observation and sheds light on manipulating the materials' properties. From this aspect, it is highly desirable to introduce many-body perturbation theories, which do not rely on data from experiments, to study these excited-state properties and their relations to experimental measurements.In thisthesis, I will present a comprehensive study on a variety of two-dimensional materials using first-principles calculation with many-body effects taken into account. Particular attention is given to the impact of electrical gating, stacking order, and doping on the quasiparticle and excitonic properties.

Book Physics of Low Dimensional Systems

Download or read book Physics of Low Dimensional Systems written by José L. Morán-López and published by Springer Science & Business Media. This book was released on 2001-05-31 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains contributions on some of the most important and current topics on the physics of low dimensional systems. The main emphasis is on the magnetic properties of surfaces, thin films, and atomic clusters. State-of-the-art techniques are discussed in detail. Techniques for the production and measurement of nanostructures are discussed, and pioneering contributions on the effect on health of these particles are presented. Important studies on semiconductor nanostructures are addressed as well as aerosol systems.

Book Fundamental Physicochemical Properties of Germanene related Materials

Download or read book Fundamental Physicochemical Properties of Germanene related Materials written by Chi-Hsuan Lee and published by Elsevier. This book was released on 2023-05-23 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental Physicochemical Properties of Germanene-related Materials: A Theoretical Perspective provides a comprehensive review of germanene-related materials to help users understand the essential properties of these compounds. The book covers various germanium complex states such as germanium oxides, germanium on Ag, germanium/silicon composites and germanium compounds. Diverse phenomena are clearly illustrated using the most outstanding candidates of the germanium/germanene-related material. Delicate simulations and analyses are thoroughly demonstrated under the first-principles method, being fully assisted by phenomenological models. Macroscopic phenomena in chemical systems, including their principles, practices and concepts of physics such as energy, structure, thermodynamics and quantum chemistry are fully covered. Germanium-based materials play critical roles in the basic and applied sciences, as clearly revealed in other group-IV and group-V condensed-matter systems. Their atomic configurations are suitable for creating the active chemical bonding among the identical and/or different nearest-neighboring atoms leading to diverse physical/chemical/material environments. Provides a comprehensive review of germanene-related materials with a physicochemical and theoretical foundation that is useful for readers in understanding the essential properties of these compounds Presents a unique theoretical framework under single and multi-hybridization theory Contains significant combinations with phenomenological and experimental measurements Focuses on the study of macroscopic phenomena in chemical systems in terms of their principles, practices and concepts of physics such as energy, structure, thermodynamics and quantum chemistry

Book Tensor Network States and Effective Particles for Low Dimensional Quantum Spin Systems

Download or read book Tensor Network States and Effective Particles for Low Dimensional Quantum Spin Systems written by Laurens Vanderstraeten and published by Springer. This book was released on 2017-08-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops new techniques for simulating the low-energy behaviour of quantum spin systems in one and two dimensions. Combining these developments, it subsequently uses the formalism of tensor network states to derive an effective particle description for one- and two-dimensional spin systems that exhibit strong quantum correlations. These techniques arise from the combination of two themes in many-particle physics: (i) the concept of quasiparticles as the effective low-energy degrees of freedom in a condensed-matter system, and (ii) entanglement as the characteristic feature for describing quantum phases of matter. Whereas the former gave rise to the use of effective field theories for understanding many-particle systems, the latter led to the development of tensor network states as a description of the entanglement distribution in quantum low-energy states.

Book Lithium Niobate Based Heterostructures

Download or read book Lithium Niobate Based Heterostructures written by SUMETS and published by Iph001. This book was released on 2018-08-29 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the use of ferroelectric materials in memory devices and the need for high-speed integrated optics devices, interest in ferroelectric thin films continues to grow. With their remarkable properties, such as energy nonvolatility, fast switching, radiative stability and unique optoacoustic and optoelectronic properties, Lithium Niobate-Based Heterostructures: Synthesis, properties and electron phenomena discusses why lithium niobate (LiNbO3) is one of the most promising of all ferroelectric materials. Based on years of study, this book presents the systematic characterization of substructure and electronic properties of a heterosystem formed in the deposition process of lithium niobate films onto the surface of silicon wafers.

Book Nanophenomena at Surfaces

Download or read book Nanophenomena at Surfaces written by Michail Michailov and published by Springer Science & Business Media. This book was released on 2011-02-24 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging "classical" and "nano" concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played a crucial role in setting up the theoretical fundamentals of nucleation and crystal growth phenomena in the last century.

Book Solid State Lasers

    Book Details:
  • Author : Massimo Inguscio
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461529980
  • Pages : 346 pages

Download or read book Solid State Lasers written by Massimo Inguscio and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the lectures and seminars presented at the NATO Ad vanced Study Institute on "Solid State Lasers: New Developments and Appli cations" the fifteenth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Elba International Physics Center, Marciana Marina, Elba Island, Tuscany, Italy, August 31 -September 11, 1992. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students al ready engaged in the area of quantum electronics or wishing to switch to this area from a different background. Presently the school is under the direction of Professors F.T. Arecchi and M. Inguscio, University of Florence, and Prof. H. Walther, University of Munich, and has its headquarters at the National Insti tute of Optics (INO), Florence, Italy. Each time the directors choose a subject of particular interest, alternating fundamental topics with technological ones, and ask colleagues specifically competent in a given area to take the scientific responsibility for that course.

Book Quantum Theory of the Electron Liquid

Download or read book Quantum Theory of the Electron Liquid written by Gabriele Giuliani and published by Cambridge University Press. This book was released on 2008-06-19 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern electronic devices and novel materials often derive their extraordinary properties from the intriguing, complex behavior of large numbers of electrons forming what is known as an electron liquid. This book provides an in-depth introduction to the physics of the interacting electron liquid in a broad variety of systems, including metals, semiconductors, artificial nano-structures, atoms and molecules. One, two and three dimensional systems are treated separately and in parallel. Different phases of the electron liquid, from the Landau Fermi liquid to the Wigner crystal, from the Luttinger liquid to the quantum Hall liquid are extensively discussed. Both static and time-dependent density functional theory are presented in detail. Although the emphasis is on the development of the basic physical ideas and on a critical discussion of the most useful approximations, the formal derivation of the results is highly detailed and based on the simplest, most direct methods.

Book Radiative Properties of Semiconductors

Download or read book Radiative Properties of Semiconductors written by N.M. Ravindra and published by Morgan & Claypool Publishers. This book was released on 2017-08-21 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical properties, particularly in the infrared range of wavelengths, continue to be of enormous interest to both material scientists and device engineers. The need for the development of standards for data of optical properties in the infrared range of wavelengths is very timely considering the on-going transition of nano-technology from fundamental R&D to manufacturing. Radiative properties play a critical role in the processing, process control and manufacturing of semiconductor materials, devices, circuits and systems. The design and implementation of real-time process control methods in manufacturing requires the knowledge of the radiative properties of materials. Sensors and imagers operate on the basis of the radiative properties of materials. This book reviews the optical properties of various semiconductors in the infrared range of wavelengths. Theoretical and experimental studies of the radiative properties of semiconductors are presented. Previous studies, potential applications and future developments are outlined. In Chapter 1, an introduction to the radiative properties is presented. Examples of instrumentation for measurements of the radiative properties is described in Chapter 2. In Chapters 3-11, case studies of the radiative properties of several semiconductors are elucidated. The modeling and applications of these properties are explained in Chapters 12 and 13, respectively. In Chapter 14, examples of the global infrastructure for these measurements are illustrated.