EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Revival  Numerical Solution Of Convection Diffusion Problems  1996

Download or read book Revival Numerical Solution Of Convection Diffusion Problems 1996 written by K.W. Morton and published by CRC Press. This book was released on 2019-02-25 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics.

Book Revival  Numerical Solution Of Convection Diffusion Problems  1996

Download or read book Revival Numerical Solution Of Convection Diffusion Problems 1996 written by K.W. Morton and published by CRC Press. This book was released on 2019-02-25 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics.

Book Numerical Solution Of Convection Diffusion Problems

Download or read book Numerical Solution Of Convection Diffusion Problems written by K.W. Morton and published by Chapman and Hall/CRC. This book was released on 1996-05-15 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics. This book will be accessible and helpful to engineers, scientists, mathematicians, and to those engaged in solving real practical problems as well as those interested in developing further the theoretical basis for the methods used.

Book Convection Diffusion Problems

Download or read book Convection Diffusion Problems written by Martin Stynes and published by American Mathematical Soc.. This book was released on 2018-11-21 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this class of problems. At first they examine finite-difference methods for two-point boundary value problems, as their analysis requires little theoretical background. Upwinding, artificial diffusion, uniformly convergent methods, and Shishkin meshes are some of the topics presented. Throughout, the authors are concerned with the accuracy of solutions when the diffusion coefficient is close to zero. Later in the book they concentrate on finite element methods for problems posed in one and two dimensions. This lucid yet thorough account of convection-dominated convection-diffusion problems and how to solve them numerically is meant for beginning graduate students, and it includes a large number of exercises. An up-to-date bibliography provides the reader with further reading.

Book On the numerical solution of convection dominated convection diffusion problems

Download or read book On the numerical solution of convection dominated convection diffusion problems written by Owe Axelsson and published by . This book was released on 1983 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Solutions of Convection diffusion Equations Using Specially Adapted Meshes

Download or read book Numerical Solutions of Convection diffusion Equations Using Specially Adapted Meshes written by Michael R. Treacy and published by . This book was released on 2002 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hybrid Numerical Methods for Convection diffusion Problems in Arbitrary Geometries

Download or read book Hybrid Numerical Methods for Convection diffusion Problems in Arbitrary Geometries written by Allen J. Toreja and published by . This book was released on 2003 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A DPG Method for Convection diffusion Problems

Download or read book A DPG Method for Convection diffusion Problems written by Jesse L. Chan and published by . This book was released on 2013 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last three decades, CFD simulations have become commonplace as a tool in the engineering and design of high-speed aircraft. Experiments are often complemented by computational simulations, and CFD technologies have proved very useful in both the reduction of aircraft development cycles, and in the simulation of conditions difficult to reproduce experimentally. Great advances have been made in the field since its introduction, especially in areas of meshing, computer architecture, and solution strategies. Despite this, there still exist many computational limitations in existing CFD methods; in particular, reliable higher order and hp-adaptive methods for the Navier-Stokes equations that govern viscous compressible flow. Solutions to the equations of viscous flow can display shocks and boundary layers, which are characterized by localized regions of rapid change and high gradients. The use of adaptive meshes is crucial in such settings -- good resolution for such problems under uniform meshes is computationally prohibitive and impractical for most physical regimes of interest. However, the construction of "good" meshes is a difficult task, usually requiring a-priori knowledge of the form of the solution. An alternative to such is the construction of automatically adaptive schemes; such methods begin with a coarse mesh and refine based on the minimization of error. However, this task is difficult, as the convergence of numerical methods for problems in CFD is notoriously sensitive to mesh quality. Additionally, the use of adaptivity becomes more difficult in the context of higher order and hp methods. Many of the above issues are tied to the notion of robustness, which we define loosely for CFD applications as the degradation of the quality of numerical solutions on a coarse mesh with respect to the Reynolds number, or nondimensional viscosity. For typical physical conditions of interest for the compressible Navier-Stokes equations, the Reynolds number dictates the scale of shock and boundary layer phenomena, and can be extremely high -- on the order of 107 in a unit domain. For an under-resolved mesh, the Galerkin finite element method develops large oscillations which prevent convergence and pollute the solution. The issue of robustness for finite element methods was addressed early on by Brooks and Hughes in the SUPG method, which introduced the idea of residual-based stabilization to combat such oscillations. Residual-based stabilizations can alternatively be viewed as modifying the standard finite element test space, and consequently the norm in which the finite element method converges. Demkowicz and Gopalakrishnan generalized this idea in 2009 by introducing the Discontinous Petrov-Galerkin (DPG) method with optimal test functions, where test functions are determined such that they minimize the discrete linear residual in a dual space. Under the ultra-weak variational formulation, these test functions can be computed locally to yield a symmetric, positive-definite system. The main theoretical thrust of this research is to develop a DPG method that is provably robust for singular perturbation problems in CFD, but does not suffer from discretization error in the approximation of test functions. Such a method is developed for the prototypical singular perturbation problem of convection-diffusion, where it is demonstrated that the method does not suffer from error in the approximation of test functions, and that the L2 error is robustly bounded by the energy error in which DPG is optimal -- in other words, as the energy error decreases, the L2 error of the solution is guaranteed to decrease as well. The method is then extended to the linearized Navier-Stokes equations, and applied to the solution of the nonlinear compressible Navier-Stokes equations. The numerical work in this dissertation has focused on the development of a 2D compressible flow code under the Camellia library, developed and maintained by Nathan Roberts at ICES. In particular, we have developed a framework allowing for rapid implementation of problems and the easy application of higher order and hp-adaptive schemes based on a natural error representation function that stems from the DPG residual. Finally, the DPG method is applied to several convection diffusion problems which mimic difficult problems in compressible flow simulations, including problems exhibiting both boundary layers and singularities in stresses. A viscous Burgers' equation is solved as an extension of DPG to nonlinear problems, and the effectiveness of DPG as a numerical method for compressible flow is assessed with the application of DPG to two benchmark problems in supersonic flow. In particular, DPG is used to solve the Carter flat plate problem and the Holden compression corner problem over a range of Mach numbers and laminar Reynolds numbers using automatically adaptive schemes, beginning with very under-resolved/coarse initial meshes.

Book Riemann Solvers and Numerical Methods for Fluid Dynamics

Download or read book Riemann Solvers and Numerical Methods for Fluid Dynamics written by Eleuterio F. Toro and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2003 with total page 1296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multi Grid Methods and Applications

Download or read book Multi Grid Methods and Applications written by Wolfgang Hackbusch and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-grid methods are the most efficient tools for solving elliptic boundary value problems. The reader finds here an elementary introduction to multi-grid algorithms as well as a comprehensive convergence analysis. One section describes special applications (convection-diffusion equations, singular perturbation problems, eigenvalue problems, etc.). The book also contains a complete presentation of the multi-grid method of the second kind, which has important applications to integral equations (e.g. the "panel method") and to numerous other problems. Readers with a practical interest in multi-grid methods will benefit from this book as well as readers with a more theoretical interest.

Book Robust Numerical Methods for Singularly Perturbed Differential Equations

Download or read book Robust Numerical Methods for Singularly Perturbed Differential Equations written by Hans-Görg Roos and published by Springer Science & Business Media. This book was released on 2008-09-17 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.

Book Meteorological and Geoastrophysical Abstracts

Download or read book Meteorological and Geoastrophysical Abstracts written by and published by . This book was released on 1997 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fitted Numerical Methods For Singular Perturbation Problems  Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions  Revised Edition

Download or read book Fitted Numerical Methods For Singular Perturbation Problems Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions Revised Edition written by John J H Miller and published by World Scientific. This book was released on 2012-02-29 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.

Book Error and the Growth of Experimental Knowledge

Download or read book Error and the Growth of Experimental Knowledge written by Deborah G. Mayo and published by University of Chicago Press. This book was released on 1996-07-15 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preface1: Learning from Error 2: Ducks, Rabbits, and Normal Science: Recasting the Kuhn's-Eye View of Popper 3: The New Experimentalism and the Bayesian Way 4: Duhem, Kuhn, and Bayes 5: Models of Experimental Inquiry 6: Severe Tests and Methodological Underdetermination7: The Experimental Basis from Which to Test Hypotheses: Brownian Motion8: Severe Tests and Novel Evidence 9: Hunting and Snooping: Understanding the Neyman-Pearson Predesignationist Stance10: Why You Cannot Be Just a Little Bit Bayesian 11: Why Pearson Rejected the Neyman-Pearson (Behavioristic) Philosophy and a Note on Objectivity in Statistics12: Error Statistics and Peircean Error Correction 13: Toward an Error-Statistical Philosophy of Science ReferencesIndex Copyright © Libri GmbH. All rights reserved.