EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Reservoir Simulation of Carbon Dioxide Geological Storage in the Gippsland Basin

Download or read book Reservoir Simulation of Carbon Dioxide Geological Storage in the Gippsland Basin written by C. Green and published by . This book was released on 2012 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This study forms part of the ongoing evaluation of the potential of the Gippsland Basin as a feasible storage site by GeoScience Victoria as part of the Victorian Geological Carbon Storage initiative"--Executive summary.

Book Geologic Carbon Sequestration

Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Book Data Driven Analytics for the Geological Storage of CO2

Download or read book Data Driven Analytics for the Geological Storage of CO2 written by Shahab Mohaghegh and published by CRC Press. This book was released on 2018-05-20 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.

Book Carbon Dioxide Sequestration in Geological Media

Download or read book Carbon Dioxide Sequestration in Geological Media written by Matthias Grobe and published by AAPG. This book was released on 2010-03-01 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 20 years, the concept of storing or permanently storing carbon dioxide in geological media has gained increasing attention as part of the important technology option of carbon capture and storage within a portfolio of options aimed at reducing anthropogenic emissions of greenhouse gases to the earths atmosphere. This book is structured into eight parts, and, among other topics, provides an overview of the current status and challenges of the science, regional assessment studies of carbon dioxide geological sequestration potential, and a discussion of the economics and regulatory aspects of carbon dioxide sequestration.

Book Geological Storage of Carbon Dioxide  CO2

Download or read book Geological Storage of Carbon Dioxide CO2 written by J Gluyas and published by Elsevier. This book was released on 2013-11-23 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind's emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS).Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands.Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. - Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) - An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects - Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS

Book Advances in the Geological Storage of Carbon Dioxide

Download or read book Advances in the Geological Storage of Carbon Dioxide written by S. Lombardi and published by Springer Science & Business Media. This book was released on 2006-01-13 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: As is now generally accepted mankind’s burning of fossil fuels has resulted in the mass transfer of greenhouse gases to the atmosphere, a modification of the delicately-balanced global carbon cycle, and a measurable change in world-wide temperatures and climate. Although not the most powerful greenhouse gas, carbon dioxide (CO) drives climate 2 change due to the enormous volumes of this gas pumped into the atmosphere every day. Produced in almost equal parts by the transportation, industrial and energy-generating sectors, atmospheric CO concentrations have 2 increased by about 50% over the last 300 years, and according to some sources are predicted to increase by up to 200% over pre-industrial levels during the next 100 years. If we are to reverse this trend, in order to prevent significant environmental change in the future, action must be taken immediately. While reduced use of fossil fuels (through conservation, increased efficiency and expanded use of renewable energy sources) must be our ultimate goal, short to medium term solutions are needed which can make an impact today. Various types of CO storage techniques have been proposed to fill this 2 need, with the injection of this gas into deep geological reservoirs being one of the most promising. For example this approach has the potential to become a closed loop system, whereby underground energy resources are brought to surface, their energy extracted (via burning or hydrogen extraction), and the resulting by-products returned to the subsurface.

Book Data Driven Analytics for the Geological Storage of CO2

Download or read book Data Driven Analytics for the Geological Storage of CO2 written by Shahab D. Mohaghegh and published by CRC Press. This book was released on 2018 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.

Book Geological Storage of CO2

Download or read book Geological Storage of CO2 written by Jan Martin Nordbotten and published by Wiley. This book was released on 2011-10-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the large research effort in both public and commercial companies, no textbook has yet been written on this subject. This book aims to provide an overview to the topic of Carbon Capture and Storage (CSS), while at the same time focusing on the dominant processes and the mathematical and numerical methods that need to be employed in order to analyze the relevant systems. The book clearly states the carbon problem and the role of CCS and carbon storage. Thereafter, it provides an introduction to single phase and multi-phase flow in porous media, including some of the most common mathematical analysis and an overview of numerical methods for the equations. A considerable part of the book discusses the appropriate scales of modeling, and how to formulate consistent governing equations at these scales. The book also illustrates real world data sets and how the ideas in the book can be exploited through combinations of analytical and numerical approaches.

Book Developments and Innovation in Carbon Dioxide  CO2  Capture and Storage Technology

Download or read book Developments and Innovation in Carbon Dioxide CO2 Capture and Storage Technology written by M. Mercedes Maroto-Valer and published by Elsevier. This book was released on 2010-07-13 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon dioxide (CO2) capture and storage (CCS) is the one advanced technology that conventional power generation cannot do without. CCS technology reduces the carbon footprint of power plants by capturing, and storing the CO2 emissions from burning fossil-fuels and biomass. This volume provides a comprehensive reference on the state of the art research, development and demonstration of carbon storage and utilisation, covering all the storage options and their environmental impacts. It critically reviews geological, terrestrial and ocean sequestration, including enhanced oil and gas recovery, as well as other advanced concepts such as industrial utilisation, mineral carbonation, biofixation and photocatalytic reduction. - Foreword written by Lord Oxburgh, Climate Science Peer - Comprehensively examines the different methods of storage of carbon dioxide (CO2) and the various concepts for utilisation - Reviews geological sequestration of CO2, including coverage of reservoir sealing and monitoring and modelling techniques used to verify geological sequestration of CO2

Book Carbon Dioxide Capture for Storage in Deep Geologic Formations   Results from the CO2 Capture Project

Download or read book Carbon Dioxide Capture for Storage in Deep Geologic Formations Results from the CO2 Capture Project written by David C Thomas and published by Elsevier. This book was released on 2015-01-03 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, the prospect of climate change resulting from anthropogenic CO2 has become a matter of growing public concern. Not only is the reduction of CO2 emissions extremely important, but keeping the cost at a manageable level is a prime priority for companies and the public, alike. The CO2 capture project (CCP) came together with a common goal in mind: find a technological process to capture CO2 emissions that is relatively low-cost and able be to be expanded to industrial applications. The Carbon Dioxide Capture and Storage Project outlines the research and findings of all the participating companies and associations involved in the CCP. The final results of thousands of hours of research are outlined in the book, showing a successful achievement of the CCP's goals for lower cost CO2 capture technology and furthering the safe, reliable option of geological storage. The Carbon Dioxide Capture and Storage Project is a valuable reference for any scientists, industrialists, government agencies, and companies interested in a safer, more cost-efficient response to the CO2 crisis.

Book A Compositional Reservoir Simulation Study to Evaluate Impacts of Captured CO2 Composition  Miscibility  and Injection Strategy on CO2 EOR and Sequestration in a Carbonate Oil Reservoir

Download or read book A Compositional Reservoir Simulation Study to Evaluate Impacts of Captured CO2 Composition Miscibility and Injection Strategy on CO2 EOR and Sequestration in a Carbonate Oil Reservoir written by Abdulhamid Alsousy and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the global energy demand rises, concerns regarding the increasing carbon levels deepen. Pushing the international community to pour their time and resources into exploring all avenues that bear potential to aid the decarbonization efforts. The decarbonization efforts attempt to either reduce carbon dioxide emissions or to capture carbon dioxide from the atmosphere. The oil and gas industry’s role falls into the first category. Where captured CO2 is sequestered into geological stable formations as part of carbon capture, utilization, and storage (CCUS) or carbon capture and storage (CCS) projects. CCUS and CCS technologies hold the keys to decarbonization, possessing a large capacity capable of storing over 8000 GtCO2, utilizing oil and gas reservoirs, saline aquifers, and coal beds to discard CO2. In addition, the sequestration in geological structures is long-term, with minimal risk of reintroducing the stored gas back to the surface. This work investigates two scenarios, one in which the reservoir undergoes a tertiary production and another where the reservoir has reached the abandonment stage of its life cycle. The analyses are carried out by employing a historically matched numerical model of a real carbonate reservoir to explore CO2 storage implications on the reservoir’s performance (EOR) and the efficiency of the injected gas storage in the subsurface. For a holistic evaluation, the numerical model accounts for relative permeability hysteresis, phase trapping, geochemistry, and thermodynamics. Various analyses are conducted to establish the recommended gas blend injected, the importance of miscibility, and the manner of injection (WAG or gas flood). The results showcased how miscible injection outperforms immiscible in CO2-EOR and sequestration efficiency. Furthermore, gas flood is recommended over WAG, especially when recycling produced gases is possible to store larger volumes of carbon dioxide

Book Carbon Dioxide Capture for Storage in Deep Geologic Formations   Results from the CO2 Capture Project

Download or read book Carbon Dioxide Capture for Storage in Deep Geologic Formations Results from the CO2 Capture Project written by David C Thomas and published by Elsevier. This book was released on 2005-01-06 with total page 1358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, the prospect of climate change resulting from anthropogenic CO2 has become a matter of growing public concern. Not only is the reduction of CO2 emissions extremely important, but keeping the cost at a manageable level is a prime priority for companies and the public, alike.The CO2 capture project (CCP) came together with a common goal in mind: find a technological process to capture CO2 emissions that is relatively low-cost and able be to be expanded to industrial applications. The Carbon Dioxide Capture and Storage Project outlines the research and findings of all the participating companies and associations involved in the CCP. The final results of thousands of hours of research are outlined in the book, showing a successful achievement of the CCP's goals for lower cost CO2 capture technology and furthering the safe, reliable option of geological storage. The Carbon Dioxide Capture and Storage Project is a valuable reference for any scientists, industrialists, government agencies, and companies interested in a safer, more cost-efficient response to the CO2 crisis.*Succeeds in tackling the most important issues at the heart of the CO2 crisis: lower-cost and safer solutions, and making the technology available at an industrial level.*Contains technical papers and findings of all researchers involved in the CO2 capture and storage project (CCP)*Consolidates thousands of hours of research into a concise and valuable reference work, providing up-to-the minute information on CO2 capture and underground storage alternatives.

Book Carbon Dioxide Flooding   Basic Mechanisms and Project Design

Download or read book Carbon Dioxide Flooding Basic Mechanisms and Project Design written by Mark A. Klins and published by Springer. This book was released on 1984-09-10 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Assessment of Geological Carbon Storage Options in the Illinois Basin

Download or read book An Assessment of Geological Carbon Storage Options in the Illinois Basin written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO2) storage in the 155,400 km2 (60,000 mi2) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO2 emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO2 emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO2, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO2 injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO2 and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO2 flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern Indiana, and an immiscible CO2 flood pilot was conducted in the Jackson sandstone (Mississippian System Big Clifty Sandstone Member) at the Sugar Creek Field in Hopkins County, western Kentucky. Up to 12% incremental oil recovery was estimated based on these pilots. A CO2 huff puff (HNP) pilot project was conducted in the Cypress Sandstone in the Loudon Field. This pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model. A pilot project at the Tanquary Farms site in Wabash County, southeastern Illinois, tested the potential storage of CO2 in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO2 storage and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot results from all four sites showed that CO2 could be injected into the subsurface without adversely affecting groundwater. Additionally, hydrocarbon production was enhanced, giving further evidence that CO2 storage in oil reservoirs and coal beds offers an economic advantage. Results from the MVA program at each site indicated that injected CO2 did not leave the injection zone. Topical reports were completed on the Middle and Late Devonian New Albany Shale and Basin CO2 emissions. The efficacy of the New Albany Shale as a storage sink could be substantial if low injectivity concerns can be alleviated. CO2 emissions in the Illinois Basin were projected to be dominated by coal-fired power plants.

Book System level Modeling for Geological Storage of CO2

Download or read book System level Modeling for Geological Storage of CO2 written by Curtis M. Oldenburg and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models. The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation, compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

Book Petrophysical Modeling and Simulation Study of Geological CO2 Sequestration

Download or read book Petrophysical Modeling and Simulation Study of Geological CO2 Sequestration written by Xianhui Kong and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global warming and greenhouse gas (GHG) emissions have recently become the significant focus of engineering research. The geological sequestration of greenhouse gases such as carbon dioxide (CO2) is one approach that has been proposed to reduce the greenhouse gas emissions and slow down global warming. Geological sequestration involves the injection of produced CO2 into subsurface formations and trapping the gas through many geological mechanisms, such as structural trapping, capillary trapping, dissolution, and mineralization. While some progress in our understanding of fluid flow in porous media has been made, many petrophysical phenomena, such as multi-phase flow, capillarity, geochemical reactions, geomechanical effect, etc., that occur during geological CO2 sequestration remain inadequately studied and pose a challenge for continued study. It is critical to continue to research on these important issues. Numerical simulators are essential tools to develop a better understanding of the geologic characteristics of brine reservoirs and to build support for future CO2 storage projects. Modeling CO2 injection requires the implementation of multiphase flow model and an Equation of State (EOS) module to compute the dissolution of CO2 in brine and vice versa. In this study, we used the Integrated Parallel Accurate Reservoir Simulator (IPARS) developed at the Center for Subsurface Modeling at The University of Texas at Austin to model the injection process and storage of CO2 in saline aquifers. We developed and implemented new petrophysical models in IPARS, and applied these models to study the process of CO2 sequestration. The research presented in this dissertation is divided into three parts. The first part of the dissertation discusses petrophysical and computational models for the mechanical, geological, petrophysical phenomena occurring during CO2 injection and sequestration. The effectiveness of CO2 storage in saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental data reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on IFT is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in the subsurface is crucial to design future storage projects for long-term, safe containment. We have developed numerical models for CO2 trapping and migration in aquifers, including a compositional flow model, a relative permeability model, a capillary model, an interfacial tension model, and others. The heterogeneities in porosity and permeability are also coupled to the petrophysical models. We have developed and implemented a general relative permeability model that combines the effects of pressure gradient, buoyancy, and capillary pressure in a compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed. The variation of residual saturation is modeled based on interfacial tension and trapping number, and a hysteretic trapping model is also presented. The second part of this dissertation is a model validation and sensitivity study using coreflood simulation data derived from laboratory study. The motivation of this study is to gain confidence in the results of the numerical simulator by validating the models and the numerical accuracies using laboratory and field pilot scale results. Published steady state, core-scale CO2/brine displacement results were selected as a reference basis for our numerical study. High-resolution compositional simulations of brine displacement with supercritical CO2 are presented using IPARS. A three-dimensional (3D) numerical model of the Berea sandstone core was constructed using heterogeneous permeability and porosity distributions based on geostatistical data. The measured capillary pressure curve was scaled using the Leverett J-function to include local heterogeneity in the sub-core scale. Simulation results indicate that accurate representation of capillary pressure at sub-core scales is critical. Water drying and the shift in relative permeability had a significant impact on the final CO2 distribution along the core. This study provided insights into the role of heterogeneity in the final CO2 distribution, where a slight variation in porosity gives rise to a large variation in the CO2 saturation distribution. The third part of this study is a simulation study using IPARS for Cranfield pilot CO2 sequestration field test, conducted by the Bureau of Economic Geology (BEG) at The University of Texas at Austin. In this CO2 sequestration project, a total of approximately 2.5 million tons supercritical CO2 was injected into a deep saline aquifer about ~10000 ft deep over 2 years, beginning December 1st 2009. In this chapter, we use the simulation capabilities of IPARS to numerically model the CO2 injection process in Cranfield. We conducted a corresponding history-matching study and got good agreement with field observation. Extensive sensitivity studies were also conducted for CO2 trapping, fluid phase behavior, relative permeability, wettability, gravity and buoyancy, and capillary effects on sequestration. Simulation results are consistent with the observed CO2 breakthrough time at the first observation well. Numerical results are also consistent with bottomhole injection flowing pressure for the first 350 days before the rate increase. The abnormal pressure response with rate increase on day 350 indicates possible geomechanical issues, which can be represented in simulation using an induced fracture near the injection well. The recorded injection well bottomhole pressure data were successfully matched after modeling the fracture in the simulation model. Results also illustrate the importance of using accurate trapping models to predict CO2 immobilization behavior. The impact of CO2/brine relative permeability curves and trapping model on bottom-hole injection pressure is also demonstrated.