Download or read book Statistical Reliability Engineering written by Hoang Pham and published by Springer Nature. This book was released on 2021-08-13 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art methodology and detailed analytical models and methods used to assess the reliability of complex systems and related applications in statistical reliability engineering. It is a textbook based mainly on the author’s recent research and publications as well as experience of over 30 years in this field. The book covers a wide range of methods and models in reliability, and their applications, including: statistical methods and model selection for machine learning; models for maintenance and software reliability; statistical reliability estimation of complex systems; and statistical reliability analysis of k out of n systems, standby systems and repairable systems. Offering numerous examples and solved problems within each chapter, this comprehensive text provides an introduction to reliability engineering graduate students, a reference for data scientists and reliability engineers, and a thorough guide for researchers and instructors in the field.
Download or read book Reliability and Statistical Computing written by Hoang Pham and published by Springer Nature. This book was released on 2020-03-28 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest developments in both qualitative and quantitative computational methods for reliability and statistics, as well as their applications. Consisting of contributions from active researchers and experienced practitioners in the field, it fills the gap between theory and practice and explores new research challenges in reliability and statistical computing. The book consists of 18 chapters. It covers (1) modeling in and methods for reliability computing, with chapters dedicated to predicted reliability modeling, optimal maintenance models, and mechanical reliability and safety analysis; (2) statistical computing methods, including machine learning techniques and deep learning approaches for sentiment analysis and recommendation systems; and (3) applications and case studies, such as modeling innovation paths of European firms, aircraft components, bus safety analysis, performance prediction in textile finishing processes, and movie recommendation systems. Given its scope, the book will appeal to postgraduates, researchers, professors, scientists, and practitioners in a range of fields, including reliability engineering and management, maintenance engineering, quality management, statistics, computer science and engineering, mechanical engineering, business analytics, and data science.
Download or read book Probability and Statistics with Reliability Queuing and Computer Science Applications written by Kishor S. Trivedi and published by John Wiley & Sons. This book was released on 2016-07-11 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Download or read book Applications in Reliability and Statistical Computing written by Hoang Pham and published by Springer Nature. This book was released on 2023-02-15 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses practical applications of reliability and statistical methods and techniques in various disciplines, using machine learning, artificial intelligence, optimization, and other computation methods. Bringing together research from international experts, each chapter aims to cover both methods and practical aspects on reliability or statistical computations with emphasis on applications. 5G and IoT are set to generate an estimated 1 billion terabytes of data by 2025 and companies continue to search for new techniques and tools that can help them practice data collection effectively in promoting their business. This book explores the era of big data through reliability and statistical computing, showcasing how almost all applications in our daily life have experienced a dramatic shift in the past two decades to a truly global industry. Including numerous illustrations and worked examples, the book is of interest to researchers, practicing engineers, and postgraduate students in the fields of reliability engineering, statistical computing, and machine learning.
Download or read book Statistical Methods for Reliability Data written by William Q. Meeker and published by John Wiley & Sons. This book was released on 2022-01-24 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative guide to the most recent advances in statistical methods for quantifying reliability Statistical Methods for Reliability Data, Second Edition (SMRD2) is an essential guide to the most widely used and recently developed statistical methods for reliability data analysis and reliability test planning. Written by three experts in the area, SMRD2 updates and extends the long- established statistical techniques and shows how to apply powerful graphical, numerical, and simulation-based methods to a range of applications in reliability. SMRD2 is a comprehensive resource that describes maximum likelihood and Bayesian methods for solving practical problems that arise in product reliability and similar areas of application. SMRD2 illustrates methods with numerous applications and all the data sets are available on the book’s website. Also, SMRD2 contains an extensive collection of exercises that will enhance its use as a course textbook. The SMRD2's website contains valuable resources, including R packages, Stan model codes, presentation slides, technical notes, information about commercial software for reliability data analysis, and csv files for the 93 data sets used in the book's examples and exercises. The importance of statistical methods in the area of engineering reliability continues to grow and SMRD2 offers an updated guide for, exploring, modeling, and drawing conclusions from reliability data. SMRD2 features: Contains a wealth of information on modern methods and techniques for reliability data analysis Offers discussions on the practical problem-solving power of various Bayesian inference methods Provides examples of Bayesian data analysis performed using the R interface to the Stan system based on Stan models that are available on the book's website Includes helpful technical-problem and data-analysis exercise sets at the end of every chapter Presents illustrative computer graphics that highlight data, results of analyses, and technical concepts Written for engineers and statisticians in industry and academia, Statistical Methods for Reliability Data, Second Edition offers an authoritative guide to this important topic.
Download or read book Statistical Analysis of Reliability Data written by Martin J. Crowder and published by Routledge. This book was released on 2017-11-13 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for those who have taken a first course in statistical methods, this book takes a modern, computer-oriented approach to describe the statistical techniques used for the assessment of reliability.
Download or read book Introduction to Reliability Analysis written by Shelemyahu Zacks and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliability analysis is concerned with the analysis of devices and systems whose individual components are prone to failure. This textbook presents an introduction to reliability analysis of repairable and non-repairable systems. It is based on courses given to both undergraduate and graduate students of engineering and statistics as well as in workshops for professional engineers and scientists. As aresult, the book concentrates on the methodology of the subject and on understanding theoretical results rather than on its theoretical development. An intrinsic aspect of reliability analysis is that the failure of components is best modelled using techniques drawn from probability and statistics. Professor Zacks covers all the basic concepts required from these subjects and covers the main modern reliability analysis techniques thoroughly. These include: the graphical analysis of life data, maximum likelihood estimation and bayesian likelihood estimation. Throughout the emphasis is on the practicalities of the subject with numerous examples drawn from industrial and engineering settings.
Download or read book Statistical Methods in Software Engineering written by Nozer D. Singpurwalla and published by Springer Science & Business Media. This book was released on 1999-08-05 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: In establishing a framework for dealing with uncertainties in software engineering, and for using quantitative measures in related decision-making, this text puts into perspective the large body of work having statistical content that is relevant to software engineering. Aimed at computer scientists, software engineers, and reliability analysts who have some exposure to probability and statistics, the content is pitched at a level appropriate for research workers in software reliability, and for graduate level courses in applied statistics computer science, operations research, and software engineering.
Download or read book Elements of Statistical Computing written by R.A. Thisted and published by Routledge. This book was released on 2017-10-19 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics and computing share many close relationships. Computing now permeates every aspect of statistics, from pure description to the development of statistical theory. At the same time, the computational methods used in statistical work span much of computer science. Elements of Statistical Computing covers the broad usage of computing in statistics. It provides a comprehensive account of the most important computational statistics. Included are discussions of numerical analysis, numerical integration, and smoothing. The author give special attention to floating point standards and numerical analysis; iterative methods for both linear and nonlinear equation, such as Gauss-Seidel method and successive over-relaxation; and computational methods for missing data, such as the EM algorithm. Also covered are new areas of interest, such as the Kalman filter, projection-pursuit methods, density estimation, and other computer-intensive techniques.
Download or read book Mathematical and Statistical Models and Methods in Reliability written by V.V. Rykov and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.
Download or read book Applied Nonparametric Statistics in Reliability written by M. Luz Gámiz and published by Springer Science & Business Media. This book was released on 2011-02-14 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric statistics has probably become the leading methodology for researchers performing data analysis. It is nevertheless true that, whereas these methods have already proved highly effective in other applied areas of knowledge such as biostatistics or social sciences, nonparametric analyses in reliability currently form an interesting area of study that has not yet been fully explored. Applied Nonparametric Statistics in Reliability is focused on the use of modern statistical methods for the estimation of dependability measures of reliability systems that operate under different conditions. The scope of the book includes: smooth estimation of the reliability function and hazard rate of non-repairable systems; study of stochastic processes for modelling the time evolution of systems when imperfect repairs are performed; nonparametric analysis of discrete and continuous time semi-Markov processes; isotonic regression analysis of the structure function of a reliability system, and lifetime regression analysis. Besides the explanation of the mathematical background, several numerical computations or simulations are presented as illustrative examples. The corresponding computer-based methods have been implemented using R and MATLAB®. A concrete modelling scheme is chosen for each practical situation and, in consequence, a nonparametric inference procedure is conducted. Applied Nonparametric Statistics in Reliability will serve the practical needs of scientists (statisticians and engineers) working on applied reliability subjects.
Download or read book Reliability Modelling written by Linda C. Wolstenholme and published by Routledge. This book was released on 2018-10-03 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliability is an essential concept in mathematics, computing, research, and all disciplines of engineering, and reliability as a characteristic is, in fact, a probability. Therefore, in this book, the author uses the statistical approach to reliability modelling along with the MINITAB software package to provide a comprehensive treatment of modelling, from the basics through advanced modelling techniques.The book begins by presenting a thorough grounding in the elements of modelling the lifetime of a single, non-repairable unit. Assuming no prior knowledge of the subject, the author includes a guide to all the fundamentals of probability theory, defines the various measures associated with reliability, then describes and discusses the more common lifetime models: the exponential, Weibull, normal, lognormal and gamma distributions. She concludes the groundwork by looking at ways of choosing and fitting the most appropriate model to a given data set, paying particular attention to two critical points: the effect of censored data and estimating lifetimes in the tail of the distribution.The focus then shifts to topics somewhat more difficult:the difference in the analysis of lifetimes for repairable versus non-repairable systems and whether repair truly ""renews"" the systemmethods for dealing with system with reliability characteristic specified for more than one component or subsystemthe effect of different types of maintenance strategiesthe analysis of life test dataThe final chapter provides snapshot introductions to a range of advanced models and presents two case studies that illustrate various ideas from throughout the book.
Download or read book Computer System Reliability written by B.S. Dhillon and published by CRC Press. This book was released on 2016-04-19 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer systems have become an important element of the world economy, with billions of dollars spent each year on development, manufacture, operation, and maintenance. Combining coverage of computer system reliability, safety, usability, and other related topics into a single volume, Computer System Reliability: Safety and Usability eliminates th
Download or read book The R Software written by Pierre Lafaye de Micheaux and published by Springer Science & Business. This book was released on 2014-05-13 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.
Download or read book Reliability and Statistical Computing written by and published by . This book was released on 2020 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest developments in both qualitative and quantitative computational methods for reliability and statistics, as well as their applications. Consisting of contributions from active researchers and experienced practitioners in the field, it fills the gap between theory and practice and explores new research challenges in reliability and statistical computing. The book consists of 18 chapters. It covers (1) modeling in and methods for reliability computing, with chapters dedicated to predicted reliability modeling, optimal maintenance models, and mechanical reliability and safety analysis; (2) statistical computing methods, including machine learning techniques and deep learning approaches for sentiment analysis and recommendation systems; and (3) applications and case studies, such as modeling innovation paths of European firms, aircraft components, bus safety analysis, performance prediction in textile finishing processes, and movie recommendation systems. Given its scope, the book will appeal to postgraduates, researchers, professors, scientists, and practitioners in a range of fields, including reliability engineering and management, maintenance engineering, quality management, statistics, computer science and engineering, mechanical engineering, business analytics, and data science.
Download or read book Mathematical and Statistical Methods in Reliability written by Bo Lindqvist and published by World Scientific. This book was released on 2003 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains extended versions of carefully selected and reviewed papers presented at the Third International Conference on Mathematical Methods in Reliability, held in Norway in 2002. It provides an overview of current research activities in reliability theory. The authors are all leading experts in the field. Readership: Graduate students, academics and professionals in probability & statistics, reliability analysis, survival analysis, industrial engineering, software engineering, operations research and applied mathematics research.
Download or read book Quantile Based Reliability Analysis written by N. Unnikrishnan Nair and published by Springer Science & Business Media. This book was released on 2013-08-24 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a fresh approach to reliability theory, an area that has gained increasing relevance in fields from statistics and engineering to demography and insurance. Its innovative use of quantile functions gives an analysis of lifetime data that is generally simpler, more robust, and more accurate than the traditional methods, and opens the door for further research in a wide variety of fields involving statistical analysis. In addition, the book can be used to good effect in the classroom as a text for advanced undergraduate and graduate courses in Reliability and Statistics.