Download or read book Compact Stars written by Norman K. Glendenning and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
Download or read book Stars and Relativity written by Ya. B. Zel’dovich and published by Courier Corporation. This book was released on 2014-06-10 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two of the greatest astrophysicists of the 20th century explore general relativity, properties of matter under astrophysical conditions, stars, and stellar systems. A valuable resource for physicists, astronomers, graduate students. 1971 edition.
Download or read book Special and General Relativity written by Norman K. Glendenning and published by Springer Science & Business Media. This book was released on 2010-04-28 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special and General Relativity are concisely developed together with essential aspects of nuclear and particle physics. Problem sets are provided for many chapters, making the book ideal for a course on the physics of white dwarf and neutron star interiors. Norman K. Glendenning is Senior Scientist Emeritus at the Nuclear Science Division, Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory at the University of California, Berkeley. He is the author of numerous books.
Download or read book Dragon s Egg written by Robert L. Forward and published by Del Rey. This book was released on 2011-02-16 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: “In science fiction there is only a handful of books that stretch the mind—and this is one of them.”—Arthur C. Clarke In a moving story of sacrifice and triumph, human scientists establish a relationship with intelligent lifeforms—the cheela—living on Dragon’s Egg, a neutron star where one Earth hour is equivalent to hundreds of their years. The cheela culturally evolve from savagery to the discovery of science, and for a brief time, men are their diligent teachers. Praise for Dragon’s Egg “Bob Forward writes in the tradition of Hal Clement’s Mission of Gravity and carries it a giant step (how else?) forward.”—Isaac Asimov “Dragon’s Egg is superb. I couldn’t have written it; it required too much real physics.”—Larry Niven “This is one for the real science-fiction fan.”—Frank Herbert “Robert L. Forward tells a good story and asks a profound question. If we run into a race of creatures who live a hundred years while we live an hour, what can they say to us or we to them?”—Freeman J. Dyson “Forward has impeccable scientific credentials, and . . . big, original, speculative ideas.”—The Washington Post
Download or read book Rotating Relativistic Stars written by John L. Friedman and published by Cambridge University Press. This book was released on 2013-02-11 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.
Download or read book Black Holes White Dwarfs and Neutron Stars written by Stuart L. Shapiro and published by John Wiley & Sons. This book was released on 2008-11-20 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
Download or read book The Physics and Astrophysics of Neutron Stars written by Luciano Rezzolla and published by Springer. This book was released on 2019-01-09 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear physics, astrophysics and gravitational physics, the study of neutron stars has seen enormous progress over the last years and has been very successful in improving our understanding in these fascinating compact objects. The book addresses a wide spectrum of readers, from students to senior researchers. Thirteen chapters written by internationally renowned experts offer a thorough overview of the various facets of this interdisciplinary science, from neutron star formation in supernovae, pulsars, equations of state super dense matter, gravitational wave emission, to alternative theories of gravity. The book was initiated by the European Cooperation in Science and Technology (COST) Action MP1304 “Exploring fundamental physics with compact stars” (NewCompStar).
Download or read book Neutron Stars written by Katia Moskvitch and published by Harvard University Press. This book was released on 2020-09-15 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The astonishing science of neutron stars and the stories of the scientists who study them. Neutron stars are as bewildering as they are elusive. The remnants of exploded stellar giants, they are tiny, merely twenty kilometers across, and incredibly dense. One teaspoon of a neutron star would weigh several million tons. They can spin up to a thousand times per second, they possess the strongest magnetic fields known in nature, and they may be the source of the most powerful explosions in the universe. Through vivid storytelling and on-site reporting from observatories all over the world, Neutron Stars offers an engaging account of these still-mysterious objects. Award-winning science journalist Katia Moskvitch takes readers from the vast Atacama Desert to the arid plains of South Africa to visit the magnificent radio telescopes and brilliant scientists responsible for our knowledge of neutron stars. She recounts the exhilarating discoveries, frustrating disappointments, and heated controversies of the past several decades and explains cutting-edge research into such phenomena as colliding neutron stars and fast radio bursts: extremely powerful but ultra-short flashes in space that scientists are still struggling to understand. She also shows how neutron stars have advanced our broader understanding of the universe—shedding light on topics such as dark matter, black holes, general relativity, and the origins of heavy elements like gold and platinum—and how we might one day use these cosmic beacons to guide interstellar travel. With clarity and passion, Moskvitch describes what we are learning at the boundaries of astronomy, where stars have life beyond death.
Download or read book Physics of Neutron Stars written by A. M. Kaminker and published by Nova Biomedical Books. This book was released on 1995 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Neutron Stars
Download or read book Numerical Relativity written by Thomas W. Baumgarte and published by Cambridge University Press. This book was released on 2010-06-24 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at students and researchers entering the field, this pedagogical introduction to numerical relativity will also interest scientists seeking a broad survey of its challenges and achievements. Assuming only a basic knowledge of classical general relativity, the book develops the mathematical formalism from first principles, and then highlights some of the pioneering simulations involving black holes and neutron stars, gravitational collapse and gravitational waves. The book contains 300 exercises to help readers master new material as it is presented. Numerous illustrations, many in color, assist in visualizing new geometric concepts and highlighting the results of computer simulations. Summary boxes encapsulate some of the most important results for quick reference. Applications covered include calculations of coalescing binary black holes and binary neutron stars, rotating stars, colliding star clusters, gravitational and magnetorotational collapse, critical phenomena, the generation of gravitational waves, and other topics of current physical and astrophysical significance.
Download or read book Neutron Stars and Pulsars written by Werner Becker and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?", "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?". All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.
Download or read book Neutron Stars Black Holes and Gravitational Waves written by James J Kolata and published by . This book was released on 2019-04-10 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: Albert Einstein's General Theory of Relativity, published in 1915, made a remarkable prediction: gravitational radiation. Just like light (electromagnetic radiation), gravity could travel through space as a wave and affect any objects it encounters by alternately compressing and expanding them. However, there was a problem. The force of gravity is around a trillion, trillion, trillion times weaker than electromagnetism so the calculated compressions and expansions were incredibly small, even for gravity waves resulting from a catastrophic astrophysical event such as a supernova explosion in our own galaxy. Discouraged by this result, physicists and astronomers didn't even try to detect these tiny, tiny effects for over 50 years. Then, in the late 1960's and early 1970's, two events occurred which started the hunt for gravity waves in earnest. The first was a report of direct detection of gravity waves thousands of times stronger than even the most optimistic calculation. Though ultimately proved wrong, this result started scientists thinking about what instrumentation might be necessary to detect these waves. The second was an actual, though indirect, detection of gravitational radiation due to the effects it had on the period of rotation of two "neutron stars" orbiting each other. In this case, the observations were in exact accord with predictions from Einstein's theory, which confirmed that a direct search might ultimately be successful. Nevertheless, it took another 40 years of development of successively more sensitive detectors before the first real direct effects were observed in 2015, 100 years after gravitational waves were first predicted. This is the story of that hunt, and the insight it is producing into an array of topics in modern science, from the creation of the chemical elements to insights into the properties of gravity itself.
Download or read book Relativistic Astrophysics written by Marek Demiański and published by Elsevier. This book was released on 2013-10-22 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity stability; and the properties of pulsar, rotating and neutron stars. The discussion then shifts to the association between gravitational collapse and black holes, as well as the astrophysical investigations of neutron stars and black holes. The final chapters examine the principles of gravitational waves and advances in understanding the field of cosmology. This book will be of great value to astrophysicists and related scientists.
Download or read book Modern General Relativity written by Mike Guidry and published by Cambridge University Press. This book was released on 2019-01-03 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Einstein's general theory of relativity is widely considered to be one of the most elegant and successful scientific theories ever developed, and it is increasingly being taught in a simplified form at advanced undergraduate level within both physics and mathematics departments. Due to the increasing interest in gravitational physics, in both the academic and the public sphere, driven largely by widely-publicised developments such as the recent observations of gravitational waves, general relativity is also one of the most popular scientific topics pursued through self-study. Modern General Relativity introduces the reader to the general theory of relativity using an example-based approach, before describing some of its most important applications in cosmology and astrophysics, such as gamma-ray bursts, neutron stars, black holes, and gravitational waves. With hundreds of worked examples, explanatory boxes, and end-of-chapter problems, this textbook provides a solid foundation for understanding one of the towering achievements of twentieth-century physics.
Download or read book The Black Hole Neutron Star Binary Merger in Full General Relativity written by Koutarou Kyutoku and published by Springer Science & Business Media. This book was released on 2013-01-11 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a systematic study of the orbital evolution, gravitational wave radiation, and merger remnant of the black hole–neutron star binary merger in full general relativity for the first time. Numerical-relativity simulations are performed using an adaptive mesh refinement code, SimulAtor for Compact objects in Relativistic Astrophysics (SACRA), which adopts a wide variety of zero-temperature equations of state for the neutron star matter. Gravitational waves provide us with quantitative information on the neutron star compactness and equation of state via the cutoff frequency in the spectra, if tidal disruption of the neutron star occurs before the binary merges. The cutoff frequency will be observed by next-generation laser interferometric ground-based gravitational wave detectors, such as Advanced LIGO, Advanced VIRGO, and KAGRA. The author has also determined that the mass of remnant disks are sufficient for the remnant black hole accretion disk to become a progenitor of short-hard gamma ray bursts accompanied by tidal disruptions and suggests that overspinning black holes may not be formed after the merger of even an extremely spinning black hole and an irrotational neutron star.
Download or read book Essential Radio Astronomy written by James J. Condon and published by Princeton University Press. This book was released on 2016-04-05 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideal text for a one-semester course in radio astronomy Essential Radio Astronomy is the only textbook on the subject specifically designed for a one-semester introductory course for advanced undergraduates or graduate students in astronomy and astrophysics. It starts from first principles in order to fill gaps in students' backgrounds, make teaching easier for professors who are not expert radio astronomers, and provide a useful reference to the essential equations used by practitioners. This unique textbook reflects the fact that students of multiwavelength astronomy typically can afford to spend only one semester studying the observational techniques particular to each wavelength band. Essential Radio Astronomy presents only the most crucial concepts—succinctly and accessibly. It covers the general principles behind radio telescopes, receivers, and digital backends without getting bogged down in engineering details. Emphasizing the physical processes in radio sources, the book's approach is shaped by the view that radio astrophysics owes more to thermodynamics than electromagnetism. Proven in the classroom and generously illustrated throughout, Essential Radio Astronomy is an invaluable resource for students and researchers alike. The only textbook specifically designed for a one-semester course in radio astronomy Starts from first principles Makes teaching easier for astronomy professors who are not expert radio astronomers Emphasizes the physical processes in radio sources Covers the principles behind radio telescopes and receivers Provides the essential equations and fundamental constants used by practitioners Supplementary website includes lecture notes, problem sets, exams, and links to interactive demonstrations An online illustration package is available to professors
Download or read book A First Course in General Relativity written by Bernard Schutz and published by Cambridge University Press. This book was released on 2009-05-14 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Second edition of a widely-used textbook providing the first step into general relativity for undergraduate students with minimal mathematical background.