EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Regret Analysis of Stochastic and Nonstochastic Multi armed Bandit Problems

Download or read book Regret Analysis of Stochastic and Nonstochastic Multi armed Bandit Problems written by Sébastien Bubeck and published by Now Pub. This book was released on 2012 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it analyzes some of the most important variants and extensions, such as the contextual bandit model.

Book Regret Analysis of Stochastic and Nonstochastic Multi Armed Bandit Problems

Download or read book Regret Analysis of Stochastic and Nonstochastic Multi Armed Bandit Problems written by Sébastien Bubeck and published by . This book was released on 2012 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-armed bandit problems are the most basic examples of sequential decision problems with an exploration-exploitation trade-off. This is the balance between staying with the option that gave highest payoffs in the past and exploring new options that might give higher payoffs in the future. In this monograph, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it also analyzes some of the most important variants and extensions, such as the contextual bandit model.

Book Introduction to Multi Armed Bandits

Download or read book Introduction to Multi Armed Bandits written by Aleksandrs Slivkins and published by . This book was released on 2019-10-31 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-armed bandits is a rich, multi-disciplinary area that has been studied since 1933, with a surge of activity in the past 10-15 years. This is the first book to provide a textbook like treatment of the subject.

Book Algorithmic Learning Theory

Download or read book Algorithmic Learning Theory written by Ricard Gavaldà and published by Springer. This book was released on 2009-09-29 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 20th International Conference on Algorithmic Learning Theory, ALT 2009, held in Porto, Portugal, in October 2009, co-located with the 12th International Conference on Discovery Science, DS 2009. The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 60 submissions. The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning. The volume also contains abstracts of the invited talks: Sanjoy Dasgupta, The Two Faces of Active Learning; Hector Geffner, Inference and Learning in Planning; Jiawei Han, Mining Heterogeneous; Information Networks By Exploring the Power of Links, Yishay Mansour, Learning and Domain Adaptation; Fernando C.N. Pereira, Learning on the Web.

Book Bandit Algorithms

Download or read book Bandit Algorithms written by Tor Lattimore and published by Cambridge University Press. This book was released on 2020-07-16 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.

Book Convex Optimization

    Book Details:
  • Author : Sébastien Bubeck
  • Publisher : Foundations and Trends (R) in Machine Learning
  • Release : 2015-11-12
  • ISBN : 9781601988607
  • Pages : 142 pages

Download or read book Convex Optimization written by Sébastien Bubeck and published by Foundations and Trends (R) in Machine Learning. This book was released on 2015-11-12 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.

Book Bandit problems

    Book Details:
  • Author : Donald A. Berry
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 9401537119
  • Pages : 283 pages

Download or read book Bandit problems written by Donald A. Berry and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our purpose in writing this monograph is to give a comprehensive treatment of the subject. We define bandit problems and give the necessary foundations in Chapter 2. Many of the important results that have appeared in the literature are presented in later chapters; these are interspersed with new results. We give proofs unless they are very easy or the result is not used in the sequel. We have simplified a number of arguments so many of the proofs given tend to be conceptual rather than calculational. All results given have been incorporated into our style and notation. The exposition is aimed at a variety of types of readers. Bandit problems and the associated mathematical and technical issues are developed from first principles. Since we have tried to be comprehens ive the mathematical level is sometimes advanced; for example, we use measure-theoretic notions freely in Chapter 2. But the mathema tically uninitiated reader can easily sidestep such discussion when it occurs in Chapter 2 and elsewhere. We have tried to appeal to graduate students and professionals in engineering, biometry, econ omics, management science, and operations research, as well as those in mathematics and statistics. The monograph could serve as a reference for professionals or as a telA in a semester or year-long graduate level course.

Book Prediction  Learning  and Games

Download or read book Prediction Learning and Games written by Nicolo Cesa-Bianchi and published by Cambridge University Press. This book was released on 2006-03-13 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.

Book Multi armed Bandit Allocation Indices

Download or read book Multi armed Bandit Allocation Indices written by John Gittins and published by John Wiley & Sons. This book was released on 2011-02-18 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1989 the first edition of this book set out Gittins' pioneering index solution to the multi-armed bandit problem and his subsequent investigation of a wide of sequential resource allocation and stochastic scheduling problems. Since then there has been a remarkable flowering of new insights, generalizations and applications, to which Glazebrook and Weber have made major contributions. This second edition brings the story up to date. There are new chapters on the achievable region approach to stochastic optimization problems, the construction of performance bounds for suboptimal policies, Whittle's restless bandits, and the use of Lagrangian relaxation in the construction and evaluation of index policies. Some of the many varied proofs of the index theorem are discussed along with the insights that they provide. Many contemporary applications are surveyed, and over 150 new references are included. Over the past 40 years the Gittins index has helped theoreticians and practitioners to address a huge variety of problems within chemometrics, economics, engineering, numerical analysis, operational research, probability, statistics and website design. This new edition will be an important resource for others wishing to use this approach.

Book Optimization for Machine Learning

Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Book Mobile Health

    Book Details:
  • Author : James M. Rehg
  • Publisher : Springer
  • Release : 2017-07-12
  • ISBN : 331951394X
  • Pages : 561 pages

Download or read book Mobile Health written by James M. Rehg and published by Springer. This book was released on 2017-07-12 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive introduction to mHealth technology and is accessible to technology-oriented researchers and practitioners with backgrounds in computer science, engineering, statistics, and applied mathematics. The contributing authors include leading researchers and practitioners in the mHealth field. The book offers an in-depth exploration of the three key elements of mHealth technology: the development of on-body sensors that can identify key health-related behaviors (sensors to markers), the use of analytic methods to predict current and future states of health and disease (markers to predictors), and the development of mobile interventions which can improve health outcomes (predictors to interventions). Chapters are organized into sections, with the first section devoted to mHealth applications, followed by three sections devoted to the above three key technology areas. Each chapter can be read independently, but the organization of the entire book provides a logical flow from the design of on-body sensing technology, through the analysis of time-varying sensor data, to interactions with a user which create opportunities to improve health outcomes. This volume is a valuable resource to spur the development of this growing field, and ideally suited for use as a textbook in an mHealth course.

Book Reinforcement Learning and Stochastic Optimization

Download or read book Reinforcement Learning and Stochastic Optimization written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2022-03-15 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt: REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.

Book A Tutorial on Thompson Sampling

Download or read book A Tutorial on Thompson Sampling written by Daniel J. Russo and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this tutorial is to explain when, why, and how to apply Thompson sampling.

Book From Bandits to Monte Carlo Tree Search

Download or read book From Bandits to Monte Carlo Tree Search written by Rmi Munos and published by Now Pub. This book was released on 2014 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the optimism in the face of uncertainty principle applied to large scale optimization problems under finite numerical budget. The initial motivation for this research originated from the empirical success of the Monte-Carlo Tree Search method popularized in Computer Go and further extended to other games, optimization, and planning problems.

Book Decision Making Under Uncertainty and Reinforcement Learning

Download or read book Decision Making Under Uncertainty and Reinforcement Learning written by Christos Dimitrakakis and published by Springer Nature. This book was released on 2022-12-02 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research in decision making under uncertainty, in particular reinforcement learning and learning with expert advice. The core elements of decision theory, Markov decision processes and reinforcement learning have not been previously collected in a concise volume. Our aim with this book was to provide a solid theoretical foundation with elementary proofs of the most important theorems in the field, all collected in one place, and not typically found in introductory textbooks. This book is addressed to graduate students that are interested in statistical decision making under uncertainty and the foundations of reinforcement learning.

Book Proceedings

    Book Details:
  • Author : Michel Verleysen
  • Publisher : Presses universitaires de Louvain
  • Release : 2015
  • ISBN : 2875870157
  • Pages : 615 pages

Download or read book Proceedings written by Michel Verleysen and published by Presses universitaires de Louvain. This book was released on 2015 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reinforcement Learning and Stochastic Optimization

Download or read book Reinforcement Learning and Stochastic Optimization written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2022-04-25 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt: REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.