Download or read book Applied Econometrics with R written by Christian Kleiber and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Download or read book Introductory Time Series with R written by Paul S.P. Cowpertwait and published by Springer Science & Business Media. This book was released on 2009-05-28 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.
Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
Download or read book Forecasting principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Download or read book R Cookbook written by Paul Teetor and published by "O'Reilly Media, Inc.". This book was released on 2011-03-03 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author
Download or read book Time Series Analysis and Its Applications written by Robert H. Shumway and published by . This book was released on 2014-01-15 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Regression Analysis Under A Priori Parameter Restrictions written by Pavel S. Knopov and published by Springer Science & Business Media. This book was released on 2011-09-28 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph focuses on the construction of regression models with linear and non-linear constrain inequalities from the theoretical point of view. Unlike previous publications, this volume analyses the properties of regression with inequality constrains, investigating the flexibility of inequality constrains and their ability to adapt in the presence of additional a priori information The implementation of inequality constrains improves the accuracy of models, and decreases the likelihood of errors. Based on the obtained theoretical results, a computational technique for estimation and prognostication problems is suggested. This approach lends itself to numerous applications in various practical problems, several of which are discussed in detail The book is useful resource for graduate students, PhD students, as well as for researchers who specialize in applied statistics and optimization. This book may also be useful to specialists in other branches of applied mathematics, technology, econometrics and finance
Download or read book Introduction to Time Series and Forecasting written by Peter J. Brockwell and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
Download or read book Regression Models for Time Series Analysis written by Benjamin Kedem and published by John Wiley & Sons. This book was released on 2005-03-11 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough review of the most current regression methods in time series analysis Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis. Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data. The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements. Notably, the book covers: * Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling * Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm * Prediction and interpolation * Stationary processes
Download or read book Encyclopedia of Operations Research and Management Science written by Saul I. Gass and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operations Research: 1934-1941," 35, 1, 143-152; "British The goal of the Encyclopedia of Operations Research and Operational Research in World War II," 35, 3, 453-470; Management Science is to provide to decision makers and "U. S. Operations Research in World War II," 35, 6, 910-925; problem solvers in business, industry, government and and the 1984 article by Harold Lardner that appeared in academia a comprehensive overview of the wide range of Operations Research: "The Origin of Operational Research," ideas, methodologies, and synergistic forces that combine to 32, 2, 465-475. form the preeminent decision-aiding fields of operations re search and management science (OR/MS). To this end, we The Encyclopedia contains no entries that define the fields enlisted a distinguished international group of academics of operations research and management science. OR and MS and practitioners to contribute articles on subjects for are often equated to one another. If one defines them by the which they are renowned. methodologies they employ, the equation would probably The editors, working with the Encyclopedia's Editorial stand inspection. If one defines them by their historical Advisory Board, surveyed and divided OR/MS into specific developments and the classes of problems they encompass, topics that collectively encompass the foundations, applica the equation becomes fuzzy. The formalism OR grew out of tions, and emerging elements of this ever-changing field. We the operational problems of the British and U. s. military also wanted to establish the close associations that OR/MS efforts in World War II.
Download or read book Statistical Methods for Environmental Epidemiology with R written by Roger D. Peng and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: As an area of statistical application, environmental epidemiology and more speci cally, the estimation of health risk associated with the exposure to - vironmental agents, has led to the development of several statistical methods and software that can then be applied to other scienti c areas. The stat- tical analyses aimed at addressing questions in environmental epidemiology have the following characteristics. Often the signal-to-noise ratio in the data is low and the targets of inference are inherently small risks. These constraints typically lead to the development and use of more sophisticated (and pot- tially less transparent) statistical models and the integration of large hi- dimensional databases. New technologies and the widespread availability of powerful computing are also adding to the complexities of scienti c inves- gation by allowing researchers to t large numbers of models and search over many sets of variables. As the number of variables measured increases, so do the degrees of freedom for in uencing the association between a risk factor and an outcome of interest. We have written this book, in part, to describe our experiences developing and applying statistical methods for the estimation for air pollution health e ects. Our experience has convinced us that the application of modern s- tistical methodology in a reproducible manner can bring to bear subst- tial bene ts to policy-makers and scientists in this area. We believe that the methods described in this book are applicable to other areas of environmental epidemiology, particularly those areas involving spatial{temporal exposures.
Download or read book Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability written by Jerzy Neyman and published by Univ of California Press. This book was released on 1961 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Time Series Analysis of Irregularly Observed Data written by E. Parzen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the support of the Office of Naval Research Program on Statistics and Probability (Dr. Edward J. Wegman, Director), The Department of Statistics at Texas A&M University hosted a Symposium on Time Series Analysis of Irregularly Observed Data during the period February 10-13, 1983. The symposium aimed to provide a review of the state of the art, define outstanding problems for research by theoreticians, transmit to practitioners recently developed algorithms, and stimulate interaction between statisticians and researchers in subject matter fields. Attendance was limited to actively involved researchers. This volume contains refereed versions of the papers presented at the Symposium. We would like to express our appreciation to the many colleagues and staff members whose cheerful help made the Symposium a successful happening which was enjoyed socially and intellectually by all participants. I would like to especially thank Dr. Donald W. Marquardt whose interest led me to undertake to organize this Symposium. This volume is dedicated to the world wide community of researchers who develop and apply methods of statistical analysis of time series. r:;) \J Picture Caption Participants in Symposium on Time Series Analysis of Irregularly Observed Data at Texas A&M University, College Station, Texas, February 10-13, 1983 First Row: Henry L. Gray, D. W. Marquardt, P. M. Robinson, Emanuel Parzen, Julia Abrahams, E. Masry, H. L. Weinert, R. H. Shumway.
Download or read book System Identification Advances and Case Studies written by and published by Academic Press. This book was released on 1977-02-21 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Download or read book Experimental and Quasi experimental Designs for Generalized Causal Inference written by William R. Shadish and published by Cengage Learning. This book was released on 2002 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sections include: experiments and generalised causal inference; statistical conclusion validity and internal validity; construct validity and external validity; quasi-experimental designs that either lack a control group or lack pretest observations on the outcome; quasi-experimental designs that use both control groups and pretests; quasi-experiments: interrupted time-series designs; regresssion discontinuity designs; randomised experiments: rationale, designs, and conditions conducive to doing them; practical problems 1: ethics, participation recruitment and random assignment; practical problems 2: treatment implementation and attrition; generalised causal inference: a grounded theory; generalised causal inference: methods for single studies; generalised causal inference: methods for multiple studies; a critical assessment of our assumptions.
Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Download or read book The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics written by Jeffrey Racine and published by Oxford University Press. This book was released on 2014-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.