EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atomic Layer Deposition of Materials for Electronic and Photonic Applications

Download or read book Atomic Layer Deposition of Materials for Electronic and Photonic Applications written by Francis Chalvet and published by . This book was released on 2008 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic Layer Deposition (ALD) is a technique to deposit extremely uniform thin films through surface-controlled reactions of gaseous precursors. It is the method of choice for ultrathin oxide and metal layers in the next generations of logic and memory devices, but finds application as well in nanotechnology and catalysis. An ALD reactor at laboratory scale was designed and built to study the growth of metal oxides such as Al2O3 and HfO2 on flat and porous surfaces. During the design of the process, the key aspects were the choice of two complementary chemical precursors and the time controlled injection of precursor fluxes into the deposition chamber. After assembly of the reactor the operation parameters (pressure, nitrogen throughput, precursor fluxes) were optimised. The reactor worked at vacuum pressures of about 1 torr and used a continuous flow of nitrogen for the transport of precursor gases. Uniform and controlled film growth was observed during growth of Al2O3 from trimethylaluminium and water, and during growth of HfO2 from hafnium-tetrakisdimethylamide and water. Electrical characterisation of MOS capacitors with a Pd/HfO2/Si structure and 3 or 9 nm thin layers of HfO2 showed the high quality of the insulating oxide. The deposition technique was then used to coat porous structures. Membranes with high aspect ratios pores (L/d = 300) were coated with HfO2 without modifying the process used for coating flat surfaces. The possibility offered by ALD to coat pores with a high level of control was used to tune the optical characteristics of porous photonic crystals. Opal-type photonic crystals were infiltrated with layers of Al2O3, TiO2 and VOx. The results obtained show the deposition of high quality oxide films with a thickness controllable at the nanoscale, on both flat and porous surfaces.

Book Atomic Layer Deposition for Semiconductors

Download or read book Atomic Layer Deposition for Semiconductors written by Cheol Seong Hwang and published by Springer Science & Business Media. This book was released on 2013-10-18 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Book Machine Learning Based Modeling and Operation of Plasma Enhanced Atomic Layer Deposition of Hafnium Oxide Thin Films

Download or read book Machine Learning Based Modeling and Operation of Plasma Enhanced Atomic Layer Deposition of Hafnium Oxide Thin Films written by Ho Yeon Chung and published by . This book was released on 2020 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma-enhanced atomic layer deposition (PEALD) has demonstrated its superiority at coatingultra-conformal high dielectric thin-films, which are essential to the fin field-effect transistors (FinFETs) as well as the advanced 3D V-NAND (vertical Not-AND) flash memory cells. Despite the growing research interest, the exploration of the optimal operation policies for PEALD remains a complicated and expensive task. Our previous work has constructed a comprehensive 3D multiscale computational fluid dynamics (CFD) model for the PEALD process and demonstrated its potential to enhance the understanding of the process. Nevertheless, the limitation of computational resources and the relatively long computation time restrict the efficient exploration of the operating space and the optimal operating strategy. Thus, in this work, we apply a 2D axisymmetric reduction of the previous 3D model of PEALD reactors with and without the showerhead design. Furthermore, a data-driven model is derived based on a recurrent neural network (RNN) for process characterization. The developed integrated data-driven model is demonstrated to accurately characterize the key aspects of the deposition process as well as the gas-phase transport profile while maintaining computational efficiency. The derived data-driven model is further validated with the results from a full 3D multiscale CFD model to evaluate model discrepancy. Using the data-driven model, an operational strategy database is generated, from which the optimal operating conditions can be determined for the deposition of HfO2 thin-film based on an elementary cost analysis.

Book Organometallic Chemistry

    Book Details:
  • Author : Nathan J Patmore
  • Publisher : Royal Society of Chemistry
  • Release : 2018-11-16
  • ISBN : 1788010671
  • Pages : 210 pages

Download or read book Organometallic Chemistry written by Nathan J Patmore and published by Royal Society of Chemistry. This book was released on 2018-11-16 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the increase in volume, velocity and variety of information, researchers can find it difficult to keep up to date with the literature in their field. Providing an invaluable resource, this volume contains analysed, evaluated and distilled information on the latest in organometallic chemistry research and emerging fields. The reviews range in scope and include π-coordinated arene metal complexes and catalysis by arene exchange, rylenes as chromophores in catalysts for CO2 photoreduction, metal nodes and metal sites in metal–organic frameworks, developments in molecular precursors for CVD and ALD, and multiphoton luminescence processes in f-element containing compounds.

Book Design and Implementation of an Atomic Layer Deposition System with a Coupled In situ X ray Photoelectron Spectroscopy Tool

Download or read book Design and Implementation of an Atomic Layer Deposition System with a Coupled In situ X ray Photoelectron Spectroscopy Tool written by Kyle Shiel and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic layer deposition (ALD) is an important tool for the research and fabrication of thin-films, used across a wide variety of applications, including the creation of thin metal-oxides, used in the fabrication of high-k semiconductor devices. This scope of this study was to design and build a 'home-made' ALD chamber, with a coupled in-situ X-ray Photoelectron Spectroscopy (XPS) tool, in order to be able to characterise the chemical components of thermally grown ALD films before exposing them to atmospheric contamination. Thermally grown films of aluminium oxide were grown using trimethylaluminium (TMA) as a precursor and H2O as a co-reactant. These films were grown at differing temperatures and initial surface conditions, in order to test which conditions led to the most ideal films. Titanium oxide films were also grown using a similar method, (employing titanium isopropoxide (TTIP) as the precursor and H2O as the co-reactant) to ensure the chamber was compatible with a variety of different ALD techniques. While some degree of aluminosilicate growth was observed for all aluminium oxide samples, the growth rates and film compositions for both the TMA and TTIP films were similar to those observed in other studies. These findings show that the system designed works as intended and shows its potential to be used as a process characterisation tool for ALD thin-film processes.

Book Atomic Layer Deposition Applications 3

Download or read book Atomic Layer Deposition Applications 3 written by Ana Londergan and published by The Electrochemical Society. This book was released on 2007 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continuously expanding realm of Atomic Layer Deposition (ALD) Applications is the symposium focus. ALD can enable the precise deposition of ultra-thin, highly conformal coatings over complex 3D topography, with controlled composition and properties. Following two successful years, this symposium is well on its way to becoming a forum for the sharing of cutting edge research in the various areas where ALD is used.

Book Designing  Modeling  Manufacturing  and Testing an Atomic Layer Deposition System

Download or read book Designing Modeling Manufacturing and Testing an Atomic Layer Deposition System written by Mohamadamin Makarem and published by . This book was released on 2015 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are multiple techniques for depositing thin films in nanoelectronics and semiconductor industries. Each technique has its own advantage and disadvantage. Of the many techniques, chemical deposition is the most favorable since materials can be deposited in high aspect ratios and give full coverage across uneven surfaces. However the most conventional technique in chemical deposition, named chemical vapor deposition (CVD), has some limiting properties like high temperature and uncontrollable film growth. To have the advantage of chemical deposition and also being able to control film growth in monolayer resolution, a new technique has been introduced, named Atomic Layer Deposition (ALD). This technique gives a very good control on layer-bylayer film growth. It can work at low temperatures and high pressures. In manufacturing nanoantennas and MIM diodes there is a need, for having an ultra thin film with full coverage across select areas. ALD is a promising solution for ultra-thin film fabrication problems. In this work we designed, modeled, manufactured, and tested a novel ALD system. Our system is designed to do more exotic film depositions than the small-range accessible with industrially available ALDs. A typical ALD process starts with entraining a precursor in a carrier gas that brings it inside the reactor where it adsorbs on the substrate’s surface. The second step is removing the extra precursor from the chamber by purging it. The third step is adding another precursor gas to the reactor. The two precursors will react with each other on the substrate’s surface. In the fourth step a purge is used to remove excessive precursors and by-products from the reactor chamber. A well-designed reactor for this process needs to have the ability to operate under high vacuum, high temperatures, and intense reactions. In the designed reactor within this project, a showerhead, a stage heater, a ceramic spacer, and stage holder were designed and manufactured. There are four gas inlets from a top flange that feed into showerhead, which helps better gas dispersion. Also in the showerhead each of the inlets can be used to bring different gases inside the reactor for CVD processes. The designed reactor is a cross reactor, which minimizes the gas entrapment. All the flanges were designed in a way to have good ability to control the system. The tubing in this system is used to bring precursors inside the reactor. To have a good control on the flow rate of precursors, individual mass flow controllers, i.e. four ALD Solenoid Valves, are used to regulate the flow of each precursor. Bubblers are used to contain precursors at the entry point of the gas delivery line. Each bubbler has a dipping tube that extends the length of the bubbler container to give the carrier gas the ability to entrain precursors and bring them inside reactor. ALD Valve-4 is designed in a way that can switch the system from ALD to CVD. This gives us the ability to have multiple depositions in different techniques in a single run. ALD Valve-3 is designed for vacuum bubblers in case there is a precursor with very low volatility or very sensitive to high temperatures. Controlling the entire system, all at the same time, is crucial to the success of ALD. The parameters that needed to be controlled are temperature, pressure, gas flow, and each of the ALD Valves. There are five parts in the designed system that have separate thermocouples and heaters. Each of bubblers, tubings, the reaction chamber’s body, and substrate stage can get to a separate temperature using PID controllers. Finally a box designed for all the PID controllers and relays to read all the temperatures side-byside. In addition, there is a terminal box that connects all the tubings’ heaters and chamber heaters together. Low vacuum pressure can be read by either of the two thermocouple gauges installed on the system. One of the thermocouple gauges reads the pressure of the reaction chamber and the other reads the pressure inside turbopump. To control gas flow and ALD Valves, a software program was developed that can send digital signals to DAQ cards and the cards can change it to analog signal and send to MFCs and Valves. A control box is designed that contains all the four DAQ cards and a circuit that gives us the ability to control the valves by low currents. Finally the manufactured ALD was tested for process of depositing Al2O3 on top of silicon substrate. The test were performed in two batches, EDS test were performed to prove the deposition of Al2O3 also AFM test showed very flat films with 1.2 nm RMS were fabricated. The results of tests ensured the ability of the ALD to deposit films.

Book Development and Applications of Oxide Thin Films Using Atomic Layer Deposition and Prompt Inorganic Condensation

Download or read book Development and Applications of Oxide Thin Films Using Atomic Layer Deposition and Prompt Inorganic Condensation written by Sean Weston Smith and published by . This book was released on 2015 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the first part of this work, thin films of Al2O3 deposited via atomic layer deposition (ALD) are demonstrated to improve the thermal stability of cellulose nanocrystal (CNC) aerogels. ALD is a chemical vapor deposition (CVD) like method in which sequential precursor exposures and self-limited surface reactions produce a conformal thin film with precise thickness control. The conformal nature of ALD is well suited to coating the porous microstructure of aerogels. SEM micrographs of coating thickness depth profiles are shown to agree with trends predicted by precursor penetration models. Thermogravimetric analysis shows samples coated with ALD Al2O3 have increased decomposition temperatures. In the second part of this work, ALD zinc tin oxide (ZTO) is used to demonstrate a technique for measuring the substrate inhibited growth in multicomponent and laminate ALD systems. The thickness control of ALD makes it attractive for multicomponent and laminate systems. However, the surface reactions of ALD mean that the first few cycles, while the film nucleates, may have a different growth per cycle (GPC) than when the film is growing on itself in a bulk growth regime. A model for the substrate inhibited ALD of ZTO is derived from two complementary sets of laminates. The thickness and composition predictions of our model are tested against the bulk GPC of ZnO and SnO2. In the final part of this work, prompt inorganic condensation (PIC) is explored as a potentially more environmentally friendly alternative to ALD for planar thin film applications. Whereas ALD requires expensive vacuum systems and has low precursor utilization, solution based methods, such as PIC, allow atmospheric processing and precursor recycling. The water based PIC solutions use nitrate counter ions which evaporate at low temperatures. Combined with the low energy required to convert the hydroxide precursor clusters into an oxide film makes PIC a promising low temperature route to dense solution processed thin films. The dielectric performance of PIC Al2O3 is shown to be comparable to ALD Al2O3 films on Si though a large interfacial SiO2 layer is found to be dominating the behavior of the PIC films. This interfacial layer is shown to form very quickly (≤ 2 min) at low temperatures (≤ 50°C). This low temperature interfacial oxide growth could be a benefit in passivating solar cells.

Book Atomic Layer Deposition of Nanostructured Materials

Download or read book Atomic Layer Deposition of Nanostructured Materials written by Nicola Pinna and published by John Wiley & Sons. This book was released on 2012-09-19 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (due to the systematic presentation of the results at the forefront of the technique and their applications) and the ones of students and newcomers to the fi eld (through the first part detailing the basic aspects of the technique). This book is a must-have for all Materials Scientists, Surface Chemists, Physicists, and Scientists in the Semiconductor Industry.

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book Multiscale Computational Fluid Dynamics Modeling of Thermal and Plasma Atomic Layer Deposition

Download or read book Multiscale Computational Fluid Dynamics Modeling of Thermal and Plasma Atomic Layer Deposition written by Yichi Zhang and published by . This book was released on 2021 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Facilitated by the increasing importance and demand of semiconductors for the smartphoneand even the automobile industry, thermal atomic layer deposition (ALD) has gained tremendous industrial interest as it offers a way to efficiently deposit thin-films with ultra-high conformity. It is chosen largely due to its superior ability to deliver ultra-conformal dielectric thin-films with high aspect-ratio surface structures, which are encountered more and more often in the novel design of metal-oxide-semiconductor field-effect transistors (MOSFETs) in the NAND (Not-And)-type flash memory devices. Based on the traditional thermal ALD method, the plasma enhanced atomic layer deposition (PEALD) allows for lower operating temperature and speeds up the deposition process with the involvement of plasma species. Despite the popularity of these two methods, the development of their operation policies remains a complicated and expensive task, which motivates the construction of an accurate and comprehensive simulation model. A series of studies have been carried out to elucidate the mechanisms and the conceptof the PEALD process. In particular, process characterization focuses on the development of a first-principles-based three-dimensional, multiscale computational fluid dynamics (CFD) model, together with reactor geometry optimizations, of SiO2 thinfilm thermal atomic layer deposition (ALD) using bis(tertiary-butylamino)silane (BTBAS) and ozone as precursors. Also, a comprehensive multiscale computational fluid dynamics (CFD) model incorporating the plasma generation chamber is used in the deposition of HfO2 thin-films utilizing tetrakis(dimethylamido) hafnium (TDMAHf) and O2 plasma as precursors. Despite the great deal of research effort, ALD and PEALD processes have not been fullycharacterized from the view point of process control. This study aims to use previously developed multiscale CFD simulation model to design and evaluate an optimized control scheme to deal with industrially-relevant disturbances. Specifically, an integrated control scheme using a proportional-integral (PI) controller and a run-to-run (R2R) controller is proposed and evaluated to ensure the deposition of high-quality conformal thin-films. The ALD and PEALD processes under typical disturbances are simulated using the multiscale CFD model, and the integrated controllers are applied in the process domain. Using the controller parameters determined from the open-loop results, the developed integrated PI-R2R controller successfully mitigates the disturbances in the reactor with the combined effort of both controllers.

Book Design and Development of Nanostructured Thin Films

Download or read book Design and Development of Nanostructured Thin Films written by Antonella Macagnano and published by MDPI. This book was released on 2020-05-13 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)

Book Vacuum Deposition onto Webs  Films and Foils

Download or read book Vacuum Deposition onto Webs Films and Foils written by Charles Bishop and published by William Andrew. This book was released on 2015-08-15 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vacuum Deposition onto Webs: Films and Foils, Third Edition, provides the latest information on vacuum deposition, the technology that applies an even coating to a flexible material that can be held on a roll, thereby offering a much faster and cheaper method of bulk coating than deposition onto single pieces or non-flexible surfaces such as glass. This technology has been used in industrial-scale applications for some time, including a wide range of metalized packaging. Its potential as a high-speed, scalable process has seen an increasing range of new products emerging that employ this cost-effective technology, including solar energy products that are moving from rigid panels onto cheaper and more versatile flexible substrates, flexible electronic circuit ‘boards’, and flexible displays. In this third edition, all chapters are thoroughly revised with a significant amount of new information added, including newly developed barrier measurement techniques, improved in-vacuum monitoring technologies, and the latest developments in Atomic Layer Deposition (ALD). Provides the know-how to maximize productivity of vacuum coating systems Thoroughly revised with a significant amount of new information added, including newly developed barrier measurement techniques, improved in-vacuum monitoring technologies, and the latest on Atomic Layer Deposition (ALD) Presents the latest information on vacuum deposition, the technology that applies an even coating to a flexible material that can be held on a roll, thereby offering a much faster and cheaper method of bulk coating Enables engineers to specify systems more effectively and enhances dialogue between non-specialists and suppliers/engineers Empowers those in rapidly expanding fields such as solar energy, display panels, and flexible electronics to unlock the potential of vacuum coating to transform their processes and products

Book Materials Science

    Book Details:
  • Author : Yitzhak Mastai
  • Publisher : BoD – Books on Demand
  • Release : 2013-06-10
  • ISBN : 953511140X
  • Pages : 563 pages

Download or read book Materials Science written by Yitzhak Mastai and published by BoD – Books on Demand. This book was released on 2013-06-10 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today modern materials science is a vibrant, emerging scientific discipline at the forefront of physics, chemistry, engineering, biology and medicine, and is becoming increasingly international in scope as demonstrated by emerging international and intercontinental collaborations and exchanges. The overall purpose of this book is to provide timely and in-depth coverage of selected advanced topics in materials science. Divided into five sections, this book provides the latest research developments in many aspects of materials science. This book is of interest to both fundamental research and also to practicing scientists and will prove invaluable to all chemical engineers, industrial chemists and students in industry and academia.

Book Atomic Layer Deposition

Download or read book Atomic Layer Deposition written by David Cameron and published by MDPI. This book was released on 2020-12-28 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic layer deposition (ALD) is a thin film deposition process renowned for its ability to produce layers with unrivaled control of thickness and composition, conformability to extreme three-dimensional structures, and versatility in the materials it can produce. These range from multi-component compounds to elemental metals and structures with compositions that can be adjusted over the thickness of the film. It has expanded from a small-scale batch process to large scale production, also including continuous processing – known as spatial ALD. It has matured into an industrial technology essential for many areas of materials science and engineering from microelectronics to corrosion protection. Its attributes make it a key technology in studying new materials and structures over an enormous range of applications. This Special Issue contains six research articles and one review article that illustrate the breadth of these applications from energy storage in batteries or supercapacitors to catalysis via x-ray, UV, and visible optics.

Book Atomic Layer Deposition  ALD

Download or read book Atomic Layer Deposition ALD written by Callisto Joan MacIsaac and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern society demands smaller, more precise devices for both microelectronic and energy technologies. The development of methods and processes that can deposit reliably uniform, conformal thin films on the nanoscale is essential to fields as diverse as catalysts and solar cells. Therefore, atomic layer deposition (ALD), a thin-film deposition technique that accomplishes these goals by using self-limiting sequential reactions between alternating precursors to achieve atomic precision over the product film, is an important tool for the modern era. Combining ALD with molecular layer deposition (MLD), which follows the same principles as ALD but deposits entire organic molecules to build films, results in a powerful system that enables the deposition of inorganic, organic, and hybrid inorganic-organic materials. Understanding the nucleation mechanisms, surface reaction chemistry, and applications of these materials and ALD/MLD processes is essential to commercialization and wider use. Through in situ Fourier transform infrared (FTIR) spectroscopy, we studied the zinc-tin-oxide (ZTO) system, a ternary ALD process that is a combination of the zinc oxide and tin oxide binary ALD processes. Previous research had indicated that the ternary system is characterized by non-idealities in the ALD growth, and we identify as a potential cause of these effects incomplete removal of the ligands from the tetrakis(dimethylamino)tin precursor, which leads to a nucleation delay when depositing ZnO on SnO2. A significant fraction of the ligands remain on the surface during the ALD of SnO2 and endure when the process is switched to ZnO ALD. This result suggests that the occupation of surface reactive sites by these persisting ligands may be the cause of the observed nucleation delay with potential ramifications for many other binary and ternary systems where persisting ligands may be present. In addition, we studied the mechanism of ALD-grown MoS2 thin films. It was observed by atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and X-ray reflectivity (XRR) that nucleation proceeds by the formation of small islands that coalesce into a complete film in under 100 cycles, with further film growth failing to occur after coalescence. This inertness is attributed to the chemical inactivity of the basal planes of MoS2. It was found that the final thickness of the as-grown film is not determined by the number of ALD cycles as per the normal regime, but by the temperature that the film is deposited at. This self-limiting layer synthesis (SLS) has been reported in the literature for higher temperature depositions of MoS2, but this is the first report of the effect in a low temperature, amorphous MoS2 ALD system. The thickness of films growth by ALD with the precursors Mo(CO)6 and H2S was found to saturate at around 7 nm on both native oxide-covered silicon and bulk crystalline MoS2 substrates, which may indicate that the SLS behavior is inherent to the ALD process and not substantially a product of the substrate surface potential. Finally, we demonstrated a new ALD/MLD hybrid process that used the MoS2 ALD precursor Mo(CO)6 and the counter reagent 1,2-ethanedithiol to create a MoS2-like material with organic domains. This Mo-thiolate possesses many properties that link it to MoS2, such as activity towards the hydrogen evolution reaction (HER) and similar Raman modes, but has a significantly lower density, optical transparency, and higher geometric surface area. It was found that the process has a 1.3 Å growth per cycle and can catalyze the HER reaction at an overpotential of 294 mV at -10 mA/cm2 , which is superior to planar MoS2 and ranks the as-deposited catalyst with the best nanostructured MoS2-based catalysts. We propose that this activity comes from the higher surface area induced by the incorporation of organic chains into the films. In summary, we explored the mechanisms and nucleation behavior of several ALD systems of interest to energy applications using both in situ and ex situ analysis techniques. These studies demonstrated the importance of understanding ALD surface chemistry to the overall chemical composition of the resultant films, the ramifications of different nucleation regimes in determining morphologies, and the power of ALD/MLD in creating analogues to previously known species with improved physical properties.