Download or read book Recent Advances in Natural Language Processing III written by Nicolas Nicolov and published by John Benjamins Publishing. This book was released on 2004-11-30 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together revised versions of a selection of papers presented at the 2003 International Conference on “Recent Advances in Natural Language Processing”. A wide range of topics is covered in the volume: semantics, dialogue, summarization, anaphora resolution, shallow parsing, morphology, part-of-speech tagging, named entity, question answering, word sense disambiguation, information extraction. Various ‘state-of-the-art’ techniques are explored: finite state processing, machine learning (support vector machines, maximum entropy, decision trees, memory-based learning, inductive logic programming, transformation-based learning, perceptions), latent semantic analysis, constraint programming. The papers address different languages (Arabic, English, German, Slavic languages) and use different linguistic frameworks (HPSG, LFG, constraint-based DCG). This book will be of interest to those who work in computational linguistics, corpus linguistics, human language technology, translation studies, cognitive science, psycholinguistics, artificial intelligence, and informatics.
Download or read book Recent Advances in NLP The Case of Arabic Language written by Mohamed Abd Elaziz and published by Springer Nature. This book was released on 2019-11-29 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: In light of the rapid rise of new trends and applications in various natural language processing tasks, this book presents high-quality research in the field. Each chapter addresses a common challenge in a theoretical or applied aspect of intelligent natural language processing related to Arabic language. Many challenges encountered during the development of the solutions can be resolved by incorporating language technology and artificial intelligence. The topics covered include machine translation; speech recognition; morphological, syntactic, and semantic processing; information retrieval; text classification; text summarization; sentiment analysis; ontology construction; Arabizi translation; Arabic dialects; Arabic lemmatization; and building and evaluating linguistic resources. This book is a valuable reference for scientists, researchers, and students from academia and industry interested in computational linguistics and artificial intelligence, especially for Arabic linguistics and related areas.
Download or read book Transfer Learning for Natural Language Processing written by Paul Azunre and published by Simon and Schuster. This book was released on 2021-08-31 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build custom NLP models in record time by adapting pre-trained machine learning models to solve specialized problems. Summary In Transfer Learning for Natural Language Processing you will learn: Fine tuning pretrained models with new domain data Picking the right model to reduce resource usage Transfer learning for neural network architectures Generating text with generative pretrained transformers Cross-lingual transfer learning with BERT Foundations for exploring NLP academic literature Training deep learning NLP models from scratch is costly, time-consuming, and requires massive amounts of data. In Transfer Learning for Natural Language Processing, DARPA researcher Paul Azunre reveals cutting-edge transfer learning techniques that apply customizable pretrained models to your own NLP architectures. You’ll learn how to use transfer learning to deliver state-of-the-art results for language comprehension, even when working with limited label data. Best of all, you’ll save on training time and computational costs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build custom NLP models in record time, even with limited datasets! Transfer learning is a machine learning technique for adapting pretrained machine learning models to solve specialized problems. This powerful approach has revolutionized natural language processing, driving improvements in machine translation, business analytics, and natural language generation. About the book Transfer Learning for Natural Language Processing teaches you to create powerful NLP solutions quickly by building on existing pretrained models. This instantly useful book provides crystal-clear explanations of the concepts you need to grok transfer learning along with hands-on examples so you can practice your new skills immediately. As you go, you’ll apply state-of-the-art transfer learning methods to create a spam email classifier, a fact checker, and more real-world applications. What's inside Fine tuning pretrained models with new domain data Picking the right model to reduce resource use Transfer learning for neural network architectures Generating text with pretrained transformers About the reader For machine learning engineers and data scientists with some experience in NLP. About the author Paul Azunre holds a PhD in Computer Science from MIT and has served as a Principal Investigator on several DARPA research programs. Table of Contents PART 1 INTRODUCTION AND OVERVIEW 1 What is transfer learning? 2 Getting started with baselines: Data preprocessing 3 Getting started with baselines: Benchmarking and optimization PART 2 SHALLOW TRANSFER LEARNING AND DEEP TRANSFER LEARNING WITH RECURRENT NEURAL NETWORKS (RNNS) 4 Shallow transfer learning for NLP 5 Preprocessing data for recurrent neural network deep transfer learning experiments 6 Deep transfer learning for NLP with recurrent neural networks PART 3 DEEP TRANSFER LEARNING WITH TRANSFORMERS AND ADAPTATION STRATEGIES 7 Deep transfer learning for NLP with the transformer and GPT 8 Deep transfer learning for NLP with BERT and multilingual BERT 9 ULMFiT and knowledge distillation adaptation strategies 10 ALBERT, adapters, and multitask adaptation strategies 11 Conclusions
Download or read book Emerging Applications of Natural Language Processing Concepts and New Research written by Bandyopadhyay, Sivaji and published by IGI Global. This book was released on 2012-10-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides pertinent and vital information that researchers, postgraduate, doctoral students, and practitioners are seeking for learning about the latest discoveries and advances in NLP methodologies and applications of NLP"--Provided by publisher.
Download or read book Recent Advances in Natural Language Processing written by Ruslan Mitkov and published by John Benjamins Publishing. This book was released on 1997-01-01 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on contributions from the First International Conference on Recent Advances in Natural Language Processing (RANLP'95) held in Tzigov Chark, Bulgaria, 14-16 September 1995. This conference was one of the most important and competitively reviewed conferences in Natural Language Processing (NLP) for 1995 with submissions from more than 30 countries. Of the 48 papers presented at RANLP'95, the best (revised) papers have been selected for this book, in the hope that they reflect the most significant and promising trends (and latest successful results) in NLP. The book is organised thematically and the contributions are grouped according to the traditional topics found in NLP: morphology, syntax, grammars, parsing, semantics, discourse, grammars, generation, machine translation, corpus processing and multimedia. To help the reader find his/her way, the authors have prepared an extensive index which contains major terms used in NLP; an index of authors which lists the names of the authors and the page numbers of their paper(s); a list of figures; and a list of tables. This book will be of interest to researchers, lecturers and graduate students interested in Natural Language Processing and more specifically to those who work in Computational Linguistics, Corpus Linguistics and Machine Translation.
Download or read book Recent Advances in Natural Language Processing III written by Nicolas Nicolov and published by John Benjamins Publishing. This book was released on 2004 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together revised versions of a selection of papers presented at the 2003 International Conference on Recent Advances in Natural Language Processing. A wide range of topics is covered in the volume: semantics, dialogue, summarization, anaphora resolution, shallow parsing, morphology, part-of-speech tagging, named entity, question answering, word sense disambiguation, information extraction. Various 'state-of-the-art' techniques are explored: finite state processing, machine learning (support vector machines, maximum entropy, decision trees, memory-based learning, inductive logic programming, transformation-based learning, perceptions), latent semantic analysis, constraint programming. The papers address different languages (Arabic, English, German, Slavic languages) and use different linguistic frameworks (HPSG, LFG, constraint-based DCG). This book will be of interest to those who work in computational linguistics, corpus linguistics, human language technology, translation studies, cognitive science, psycholinguistics, artificial intelligence, and informatics.
Download or read book Recent Advances in Natural Language Processing V written by Nicolas Nicolov and published by John Benjamins Publishing. This book was released on 2009-10-22 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together revised versions of a selection of papers presented at the Sixth International Conference on “Recent Advances in Natural Language Processing” (RANLP) held in Borovets, Bulgaria, 27–29 September 2007. These papers cover a wide variety of Natural Language Processing (NLP) topics: ontologies, named entity extraction, translation and transliteration, morphology (derivational and inflectional), part-of-speech tagging, parsing (incremental processing, dependency parsing), semantic role labeling, word sense disambiguation, temporal representations, inference and metaphor, semantic similarity, coreference resolution, clustering (topic modeling, topic tracking), summarization, cross-lingual retrieval, lexical and syntactic resources, multi-modal processing. The aim of this volume is to present new results in NLP based on modern theories and methodologies, making it of interest to researchers in NLP and, more specifically, to those who work in Computational Linguistics, Corpus Linguistics, and Machine Translation.
Download or read book Recent Advances in Natural Language Processing IV written by Nicolas Nicolov and published by John Benjamins Publishing. This book was released on 2007-12-13 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together selected and revised papers from the international conference on “Recent Advances in Natural Language Processing”, held in Borovets, Bulgaria, in September 2005. The best papers have been selected for this volume with the aim to reflect the most promising and significant trends in natural language processing. The volume covers a wide variety of topics in Natural Language Processing, including information extraction, indexing, latent semantic analysis, dependency parsing, anaphora and referring expressions, spam analysis, document classification, rhetorical relations, textual entailment, question answering, ontologies, word sense disambiguation, machine translation, treebanks and corpora.
Download or read book Embeddings in Natural Language Processing written by Mohammad Taher Pilehvar and published by Morgan & Claypool Publishers. This book was released on 2020-11-13 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.
Download or read book Representation Learning for Natural Language Processing written by Zhiyuan Liu and published by Springer Nature. This book was released on 2020-07-03 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Download or read book The Oxford Handbook of Computational Linguistics written by Ruslan Mitkov and published by Oxford University Press. This book was released on 2004 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook of computational linguistics, written for academics, graduate students and researchers, provides a state-of-the-art reference to one of the most active and productive fields in linguistics.
Download or read book Handbook of Research on Natural Language Processing and Smart Service Systems written by Pazos-Rangel, Rodolfo Abraham and published by IGI Global. This book was released on 2020-10-02 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural language processing (NLP) is a branch of artificial intelligence that has emerged as a prevalent method of practice for a sizeable amount of companies. NLP enables software to understand human language and process complex data that is generated within businesses. In a competitive market, leading organizations are showing an increased interest in implementing this technology to improve user experience and establish smarter decision-making methods. Research on the application of intelligent analytics is crucial for professionals and companies who wish to gain an edge on the opposition. The Handbook of Research on Natural Language Processing and Smart Service Systems is a collection of innovative research on the integration and development of intelligent software tools and their various applications within professional environments. While highlighting topics including discourse analysis, information retrieval, and advanced dialog systems, this book is ideally designed for developers, practitioners, researchers, managers, engineers, academicians, business professionals, scholars, policymakers, and students seeking current research on the improvement of competitive practices through the use of NLP and smart service systems.
Download or read book Advanced Natural Language Processing with TensorFlow 2 written by Ashish Bansal and published by Packt Publishing Ltd. This book was released on 2021-02-04 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-stop solution for NLP practitioners, ML developers, and data scientists to build effective NLP systems that can perform real-world complicated tasks Key FeaturesApply deep learning algorithms and techniques such as BiLSTMS, CRFs, BPE and more using TensorFlow 2Explore applications like text generation, summarization, weakly supervised labelling and moreRead cutting edge material with seminal papers provided in the GitHub repository with full working codeBook Description Recently, there have been tremendous advances in NLP, and we are now moving from research labs into practical applications. This book comes with a perfect blend of both the theoretical and practical aspects of trending and complex NLP techniques. The book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It helps you apply the concepts of pre-processing text using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. You will build Named Entity Recognition (NER) from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs. The book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbots. You will learn how to apply transfer learning and fine-tuning using TensorFlow 2. Further, it covers practical techniques that can simplify the labelling of textual data. The book also has a working code that is adaptable to your use cases for each tech piece. By the end of the book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems. What you will learnGrasp important pre-steps in building NLP applications like POS taggingUse transfer and weakly supervised learning using libraries like SnorkelDo sentiment analysis using BERTApply encoder-decoder NN architectures and beam search for summarizing textsUse Transformer models with attention to bring images and text togetherBuild apps that generate captions and answer questions about images using custom TransformersUse advanced TensorFlow techniques like learning rate annealing, custom layers, and custom loss functions to build the latest DeepNLP modelsWho this book is for This is not an introductory book and assumes the reader is familiar with basics of NLP and has fundamental Python skills, as well as basic knowledge of machine learning and undergraduate-level calculus and linear algebra. The readers who can benefit the most from this book include intermediate ML developers who are familiar with the basics of supervised learning and deep learning techniques and professionals who already use TensorFlow/Python for purposes such as data science, ML, research, analysis, etc.
Download or read book Deep Learning in Natural Language Processing written by Li Deng and published by Springer. This book was released on 2018-05-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.
Download or read book Recent Advances in Natural Language Processing written by and published by . This book was released on 2003 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributed papers presented at an ongoing International Conference on Natural Language Processing held at Mysore, 2003.
Download or read book Applied Natural Language Processing in the Enterprise written by Ankur A. Patel and published by "O'Reilly Media, Inc.". This book was released on 2021-05-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production
Download or read book Recent Advances in Natural and Engineering Sciences written by Abdulkader ALHUSAINI and published by Livre de Lyon. This book was released on 2023-03-25 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent Advances in Natural and Engineering Sciences