EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Graph Representation Learning

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Book Graph Embedding for Pattern Analysis

Download or read book Graph Embedding for Pattern Analysis written by Yun Fu and published by Springer Science & Business Media. This book was released on 2012-11-19 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.

Book Large scale Graph Analysis  System  Algorithm and Optimization

Download or read book Large scale Graph Analysis System Algorithm and Optimization written by Yingxia Shao and published by Springer. This book was released on 2020-08-15 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms – the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms. This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology for designing efficient large-scale graph algorithms.

Book Graph Analysis and Visualization

Download or read book Graph Analysis and Visualization written by Richard Brath and published by John Wiley & Sons. This book was released on 2015-01-30 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.

Book Algorithm Engineering

Download or read book Algorithm Engineering written by Lasse Kliemann and published by Springer. This book was released on 2016-11-10 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithm Engineering is a methodology for algorithmic research that combines theory with implementation and experimentation in order to obtain better algorithms with high practical impact. Traditionally, the study of algorithms was dominated by mathematical (worst-case) analysis. In Algorithm Engineering, algorithms are also implemented and experiments conducted in a systematic way, sometimes resembling the experimentation processes known from fields such as biology, chemistry, or physics. This helps in counteracting an otherwise growing gap between theory and practice.

Book Recent Advances in Biological Network Analysis

Download or read book Recent Advances in Biological Network Analysis written by Byung-Jun Yoon and published by Springer Nature. This book was released on 2021-01-13 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent advances in the emerging field of computational network biology with special emphasis on comparative network analysis and network module detection. The chapters in this volume are contributed by leading international researchers in computational network biology and offer in-depth insight on the latest techniques in network alignment, network clustering, and network module detection. Chapters discuss the advantages of the respective techniques and present the current challenges and open problems in the field. Recent Advances in Biological Network Analysis: Comparative Network Analysis and Network Module Detection will serve as a great resource for graduate students, academics, and researchers who are currently working in areas relevant to computational network biology or wish to learn more about the field. Data scientists whose work involves the analysis of graphs, networks, and other types of data with topological structure or relations can also benefit from the book's insights.

Book Recent Advancements in Graph Theory

Download or read book Recent Advancements in Graph Theory written by N. P. Shrimali and published by CRC Press. This book was released on 2020-11-09 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph Theory is a branch of discrete mathematics. It has many applications to many different areas of Science and Engineering. This book provides the most up-to-date research findings and applications in Graph Theory. This book focuses on the latest research in Graph Theory. It provides recent findings that are occurring in the field, offers insights on an international and transnational levels, identifies the gaps in the results, and includes forthcoming international studies and research, along with its applications in Networking, Computer Science, Chemistry, and Biological Sciences, etc. The book is written with researchers and post graduate students in mind.

Book Recent Advances in Computer Science and Information Engineering

Download or read book Recent Advances in Computer Science and Information Engineering written by Zhihong Qian and published by Springer Science & Business Media. This book was released on 2012-02-04 with total page 849 pages. Available in PDF, EPUB and Kindle. Book excerpt: CSIE 2011 is an international scientific Congress for distinguished scholars engaged in scientific, engineering and technological research, dedicated to build a platform for exploring and discussing the future of Computer Science and Information Engineering with existing and potential application scenarios. The congress has been held twice, in Los Angeles, USA for the first and in Changchun, China for the second time, each of which attracted a large number of researchers from all over the world. The congress turns out to develop a spirit of cooperation that leads to new friendship for addressing a wide variety of ongoing problems in this vibrant area of technology and fostering more collaboration over the world. The congress, CSIE 2011, received 2483 full paper and abstract submissions from 27 countries and regions over the world. Through a rigorous peer review process, all submissions were refereed based on their quality of content, level of innovation, significance, originality and legibility. 688 papers have been accepted for the international congress proceedings ultimately.

Book Recent Advances and the Future Generation of Neuroinformatics Infrastructure

Download or read book Recent Advances and the Future Generation of Neuroinformatics Infrastructure written by Xi Cheng and published by Frontiers Media SA. This book was released on 2015-12-11 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The huge volume of multi-modal neuroimaging data across different neuroscience communities has posed a daunting challenge to traditional methods of data sharing, data archiving, data processing and data analysis. Neuroinformatics plays a crucial role in creating advanced methodologies and tools for the handling of varied and heterogeneous datasets in order to better understand the structure and function of the brain. These tools and methodologies not only enhance data collection, analysis, integration, interpretation, modeling, and dissemination of data, but also promote data sharing and collaboration. This Neuroinformatics Research Topic aims to summarize the state-of-art of the current achievements and explores the directions for the future generation of neuroinformatics infrastructure. The publications present solutions for data archiving, data processing and workflow, data mining, and system integration methodologies. Some of the systems presented are large in scale, geographically distributed, and already have a well-established user community. Some discuss opportunities and methodologies that facilitate large-scale parallel data processing tasks under a heterogeneous computational environment. We wish to stimulate on-going discussions at the level of the neuroinformatics infrastructure including the common challenges, new technologies of maximum benefit, key features of next generation infrastructure, etc. We have asked leading research groups from different research areas of neuroscience/neuroimaging to provide their thoughts on the development of a state of the art and highly-efficient neuroinformatics infrastructure. Such discussions will inspire and help guide the development of a state of the art, highly-efficient neuroinformatics infrastructure.

Book Graph Based Social Media Analysis

Download or read book Graph Based Social Media Analysis written by Ioannis Pitas and published by CRC Press. This book was released on 2016-04-19 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focused on the mathematical foundations of social media analysis, Graph-Based Social Media Analysis provides a comprehensive introduction to the use of graph analysis in the study of social and digital media. It addresses an important scientific and technological challenge, namely the confluence of graph analysis and network theory with linear alge

Book Introduction to Analysis on Graphs

Download or read book Introduction to Analysis on Graphs written by Alexander Grigor’yan and published by American Mathematical Soc.. This book was released on 2018-08-23 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: A central object of this book is the discrete Laplace operator on finite and infinite graphs. The eigenvalues of the discrete Laplace operator have long been used in graph theory as a convenient tool for understanding the structure of complex graphs. They can also be used in order to estimate the rate of convergence to equilibrium of a random walk (Markov chain) on finite graphs. For infinite graphs, a study of the heat kernel allows to solve the type problem—a problem of deciding whether the random walk is recurrent or transient. This book starts with elementary properties of the eigenvalues on finite graphs, continues with their estimates and applications, and concludes with heat kernel estimates on infinite graphs and their application to the type problem. The book is suitable for beginners in the subject and accessible to undergraduate and graduate students with a background in linear algebra I and analysis I. It is based on a lecture course taught by the author and includes a wide variety of exercises. The book will help the reader to reach a level of understanding sufficient to start pursuing research in this exciting area.

Book Graph Powered Machine Learning

Download or read book Graph Powered Machine Learning written by Alessandro Negro and published by Simon and Schuster. This book was released on 2021-10-05 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data. Summary In Graph-Powered Machine Learning, you will learn: The lifecycle of a machine learning project Graphs in big data platforms Data source modeling using graphs Graph-based natural language processing, recommendations, and fraud detection techniques Graph algorithms Working with Neo4J Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices. Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications. Graph-based machine learning techniques offer a powerful new perspective for machine learning in social networking, fraud detection, natural language processing, and recommendation systems. About the book Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks. What's inside Graphs in big data platforms Recommendations, natural language processing, fraud detection Graph algorithms Working with the Neo4J graph database About the reader For readers comfortable with machine learning basics. About the author Alessandro Negro is Chief Scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science. Table of Contents PART 1 INTRODUCTION 1 Machine learning and graphs: An introduction 2 Graph data engineering 3 Graphs in machine learning applications PART 2 RECOMMENDATIONS 4 Content-based recommendations 5 Collaborative filtering 6 Session-based recommendations 7 Context-aware and hybrid recommendations PART 3 FIGHTING FRAUD 8 Basic approaches to graph-powered fraud detection 9 Proximity-based algorithms 10 Social network analysis against fraud PART 4 TAMING TEXT WITH GRAPHS 11 Graph-based natural language processing 12 Knowledge graphs

Book Recent Advances in Intrusion Detection

Download or read book Recent Advances in Intrusion Detection written by Andreas Wespi and published by Springer Science & Business Media. This book was released on 2002-10-02 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Recent Advances in Algorithmic Differentiation

Download or read book Recent Advances in Algorithmic Differentiation written by Shaun Forth and published by Springer Science & Business Media. This book was released on 2012-07-30 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings represent the state of knowledge in the area of algorithmic differentiation (AD). The 31 contributed papers presented at the AD2012 conference cover the application of AD to many areas in science and engineering as well as aspects of AD theory and its implementation in tools. For all papers the referees, selected from the program committee and the greater community, as well as the editors have emphasized accessibility of the presented ideas also to non-AD experts. In the AD tools arena new implementations are introduced covering, for example, Java and graphical modeling environments or join the set of existing tools for Fortran. New developments in AD algorithms target the efficiency of matrix-operation derivatives, detection and exploitation of sparsity, partial separability, the treatment of nonsmooth functions, and other high-level mathematical aspects of the numerical computations to be differentiated. Applications stem from the Earth sciences, nuclear engineering, fluid dynamics, and chemistry, to name just a few. In many cases the applications in a given area of science or engineering share characteristics that require specific approaches to enable AD capabilities or provide an opportunity for efficiency gains in the derivative computation. The description of these characteristics and of the techniques for successfully using AD should make the proceedings a valuable source of information for users of AD tools.

Book Recent Advances in Natural Language Processing III

Download or read book Recent Advances in Natural Language Processing III written by Nicolas Nicolov and published by John Benjamins Publishing. This book was released on 2004 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together revised versions of a selection of papers presented at the 2003 International Conference on "Recent Advances in Natural Language Processing". A wide range of topics is covered in the volume: semantics, dialog, summarization, anaphora resolution, shallow parsing, morphology, part-of-speech tagging, named entity, question answering, word sense disambiguation, information extraction. Various 'state-of-the-art' techniques are explored: finite state processing, machine learning (support vector machines, maximum entropy, decision trees, memory-based learning, inductive logic programming, transformation-based learning, perceptions), latent semantic analysis, constraint programming. The papers address different languages (Arabic, English, German, Slavic languages) and use different linguistic frameworks (HPSG, LFG, constraint-based DCG). This book will be of interest to those who work in computational linguistics, corpus linguistics, human language technology, translation studies, cognitive science, psycholinguistics, artificial intelligence, and informatics.

Book Recent Advances in Artificial Intelligence Research and Development

Download or read book Recent Advances in Artificial Intelligence Research and Development written by I. Aguiló and published by IOS Press. This book was released on 2017-10-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence in all its forms is increasingly interwoven into all our lives, and remains one of the most lively areas of discussion and interest in technology today. This book presents the proceedings of the 20th International Conference of the Catalan Association for Artificial Intelligence (CCIA’2017): ‘Recent Advances in Artificial Intelligence Research and Development’, held in Deltebre, Terres de l'Ebre, Spain, in October 2017. Despite its title, this annual conference is not only for researchers from the Catalan Countries, but is an international event which attracts participants from countries all around the world. In total, 41 original contributions were submitted to CCIA’2017. Of these, 21 were accepted as long papers for oral presentation and 13 were accepted as short papers to be presented as posters. These 34 submissions appear in this book organized around a number of different topics including: agents and multi-agent systems; artificial vision and image processing; machine learning; artificial neural networks; cognitive modeling; fuzzy logic and reasoning; robotics; and AI applications. The book also includes abstracts of the 3 presentations by invited speakers. The book offers a representative sample of the current state of the art in the artificial intelligence community, and will be of interest to all those working with AI worldwide.

Book Analysis and Geometry on Graphs and Manifolds

Download or read book Analysis and Geometry on Graphs and Manifolds written by Matthias Keller and published by Cambridge University Press. This book was released on 2020-08-20 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the interplay between several rapidly expanding areas of mathematics. Suitable for graduate students as well as researchers, it provides surveys of topics linking geometry, spectral theory and stochastics.