Download or read book Evolutionary Multiobjective Optimization written by Ajith Abraham and published by Springer Science & Business Media. This book was released on 2005-09-05 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.
Download or read book Multi Objective Optimization using Evolutionary Algorithms written by Kalyanmoy Deb and published by John Wiley & Sons. This book was released on 2001-07-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.
Download or read book Recent Advances in Evolutionary Multi objective Optimization written by Slim Bechikh and published by Springer. This book was released on 2016-08-09 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-and coming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include: optimization in dynamic environments, multi-objective bilevel programming, handling high dimensionality under many objectives, and evolutionary multitasking. In addition to theory and methodology, this book describes several real-world applications from various domains, which will expose the readers to the versatility of evolutionary multi-objective optimization.
Download or read book Applications of Multi objective Evolutionary Algorithms written by Carlos A. Coello Coello and published by World Scientific. This book was released on 2004 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Detailed MOEA applications discussed by international experts - State-of-the-art practical insights in tackling statistical optimization with MOEAs - A unique monograph covering a wide spectrum of real-world applications - Step-by-step discussion of MOEA applications in a variety of domains
Download or read book Knowledge Incorporation in Evolutionary Computation written by Yaochu Jin and published by Springer. This book was released on 2013-04-22 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Download or read book Advances in Multi Objective Nature Inspired Computing written by Carlos Coello Coello and published by Springer Science & Business Media. This book was released on 2010-02-04 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to collect contributions that deal with the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems. Such a collection intends to provide an overview of the state-of-the-art developments in this field, with the aim of motivating more researchers in operations research, engineering, and computer science, to do research in this area. As such, this book is expected to become a valuable reference for those wishing to do research on the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems.
Download or read book Advances in Evolutionary Computing written by Ashish Ghosh and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1001 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.
Download or read book Multi Objective Optimization written by Gade Pandu Rangaiah and published by World Scientific. This book was released on 2009 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization has been playing a key role in the design, planning and operation of chemical and related processes for nearly half a century. Although process optimization for multiple objectives was studied by several researchers back in the 1970s and 1980s, it has attracted active research in the last 10 years, spurred by the new and effective techniques for multi-objective optimization. In order to capture this renewed interest, this monograph presents the recent and ongoing research in multi-optimization techniques and their applications in chemical engineering. Following a brief introduction and general review on the development of multi-objective optimization applications in chemical engineering since 2000, the book gives a description of selected multi-objective techniques and then goes on to discuss chemical engineering applications. These applications are from diverse areas within chemical engineering, and are presented in detail. All chapters will be of interest to researchers in multi-objective optimization and/or chemical engineering; they can be read individually and used in one''s learning and research. Several exercises are included at the end of many chapters, for use by both practicing engineers and students.
Download or read book Evolutionary Algorithms for Solving Multi Objective Problems written by Carlos Coello Coello and published by Springer Science & Business Media. This book was released on 2007-08-26 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.
Download or read book Handbook of Natural Computing written by Grzegorz Rozenberg and published by Springer. This book was released on 2012-07-09 with total page 2052 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.
Download or read book Multiobjective Optimization written by Jürgen Branke and published by Springer. This book was released on 2008-10-18 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.
Download or read book Evolutionary Multi Criterion Optimization written by Matthias Ehrgott and published by Springer Science & Business Media. This book was released on 2009-03-26 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2009, held in Nantes, France in April 2009. The 39 revised full papers presented together with 5 invited talks were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on theoretical analysis, uncertainty and noise, algorithm development, performance analysis and comparison, applications, MCDM Track, Many objectives, alternative methods, as well as EMO and MCDA.
Download or read book Evolutionary Multi Criterion Optimization written by Carlos Coello Coello and published by Springer. This book was released on 2005-01-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Multiobjective Evolutionary Algorithms and Applications written by Kay Chen Tan and published by Springer Science & Business Media. This book was released on 2005-05-04 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary multiobjective optimization is currently gaining a lot of attention, particularly for researchers in the evolutionary computation communities. Covers the authors’ recent research in the area of multiobjective evolutionary algorithms as well as its practical applications.
Download or read book Multi Objective Optimization in Chemical Engineering written by Gade Pandu Rangaiah and published by John Wiley & Sons. This book was released on 2013-03-20 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: For reasons both financial and environmental, there is a perpetual need to optimize the design and operating conditions of industrial process systems in order to improve their performance, energy efficiency, profitability, safety and reliability. However, with most chemical engineering application problems having many variables with complex inter-relationships, meeting these optimization objectives can be challenging. This is where Multi-Objective Optimization (MOO) is useful to find the optimal trade-offs among two or more conflicting objectives. This book provides an overview of the recent developments and applications of MOO for modeling, design and operation of chemical, petrochemical, pharmaceutical, energy and related processes. It then covers important theoretical and computational developments as well as specific applications such as metabolic reaction networks, chromatographic systems, CO2 emissions targeting for petroleum refining units, ecodesign of chemical processes, ethanol purification and cumene process design. Multi-Objective Optimization in Chemical Engineering: Developments and Applications is an invaluable resource for researchers and graduate students in chemical engineering as well as industrial practitioners and engineers involved in process design, modeling and optimization.
Download or read book Advances in Differential Evolution written by Uday K. Chakraborty and published by Springer Science & Business Media. This book was released on 2008-07-23 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential evolution is arguably one of the hottest topics in today's computational intelligence research. This book seeks to present a comprehensive study of the state of the art in this technology and also directions for future research. The fourteen chapters of this book have been written by leading experts in the area. The first seven chapters focus on algorithm design, while the last seven describe real-world applications. Chapter 1 introduces the basic differential evolution (DE) algorithm and presents a broad overview of the field. Chapter 2 presents a new, rotationally invariant DE algorithm. The role of self-adaptive control parameters in DE is investigated in Chapter 3. Chapters 4 and 5 address constrained optimization; the former develops suitable stopping conditions for the DE run, and the latter presents an improved DE algorithm for problems with very small feasible regions. A novel DE algorithm, based on the concept of "opposite" points, is the topic of Chapter 6. Chapter 7 provides a survey of multi-objective differential evolution algorithms. A review of the major application areas of differential evolution is presented in Chapter 8. Chapter 9 discusses the application of differential evolution in two important areas of applied electromagnetics. Chapters 10 and 11 focus on applications of hybrid DE algorithms to problems in power system optimization. Chapter 12 applies the DE algorithm to computer chess. The use of DE to solve a problem in bioprocess engineering is discussed in Chapter 13. Chapter 14 describes the application of hybrid differential evolution to a problem in control engineering.
Download or read book Parallel Problem Solving from Nature PPSN VIII written by Xin Yao and published by Springer Science & Business Media. This book was released on 2004-09-13 with total page 1204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 8th International Conference on Parallel Problem Solving from Nature, PPSN 2004, held in Birmingham, UK, in September 2004. The 119 revised full papers presented were carefully reviewed and selected from 358 submissions. The papers address all current issues in biologically inspired computing; they are organized in topical sections on theoretical and foundational issues, new algorithms, applications, multi-objective optimization, co-evolution, robotics and multi-agent systems, and learning classifier systems and data mining.