Download or read book Applications of Random Matrices in Physics written by Édouard Brezin and published by Springer Science & Business Media. This book was released on 2006-07-03 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the general culture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories. The book consists of the lectures of the leading specialists and covers rather systematically many of these topics. It can be useful to the specialists in various subjects using random matrices, from PhD students to confirmed scientists.
Download or read book Random Matrix Theory written by Percy Deift and published by American Mathematical Soc.. This book was released on 2009-01-01 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derived." --Book Jacket.
Download or read book Random Matrix Theory with an External Source written by Edouard Brézin and published by Springer. This book was released on 2017-01-11 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to compute various topological invariants for surfaces such as the intersection numbers for curves drawn on a surface of given genus with marked points, Euler characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries.
Download or read book The Random Matrix Theory of the Classical Compact Groups written by Elizabeth S. Meckes and published by Cambridge University Press. This book was released on 2019-08-01 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.
Download or read book Topics in Random Matrix Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2012-03-21 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.
Download or read book A First Course in Random Matrix Theory written by Marc Potters and published by Cambridge University Press. This book was released on 2020-12-03 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
Download or read book A Dynamical Approach to Random Matrix Theory written by László Erdős and published by American Mathematical Soc.. This book was released on 2017-08-30 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Download or read book Random Matrices and the Statistical Theory of Energy Levels written by M. L. Mehta and published by Academic Press. This book was released on 2014-05-12 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random Matrices and the Statistical Theory of Energy Levels focuses on the processes, methodologies, calculations, and approaches involved in random matrices and the statistical theory of energy levels, including ensembles and density and correlation functions. The publication first elaborates on the joint probability density function for the matrix elements and eigenvalues, including the Gaussian unitary, symplectic, and orthogonal ensembles and time-reversal invariance. The text then examines the Gaussian ensembles, as well as the asymptotic formula for the level density and partition function. The manuscript elaborates on the Brownian motion model, circuit ensembles, correlation functions, thermodynamics, and spacing distribution of circular ensembles. Topics include continuum model for the spacing distribution, thermodynamic quantities, joint probability density function for the eigenvalues, stationary and nonstationary ensembles, and ensemble averages. The publication then examines the joint probability density functions for two nearby spacings and invariance hypothesis and matrix element correlations. The text is a valuable source of data for researchers interested in random matrices and the statistical theory of energy levels.
Download or read book Embedded Random Matrix Ensembles in Quantum Physics written by V.K.B. Kota and published by Springer. This book was released on 2014-07-08 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although used with increasing frequency in many branches of physics, random matrix ensembles are not always sufficiently specific to account for important features of the physical system at hand. One refinement which retains the basic stochastic approach but allows for such features consists in the use of embedded ensembles. The present text is an exhaustive introduction to and survey of this important field. Starting with an easy-to-read introduction to general random matrix theory, the text then develops the necessary concepts from the beginning, accompanying the reader to the frontiers of present-day research. With some notable exceptions, to date these ensembles have primarily been applied in nuclear spectroscopy. A characteristic example is the use of a random two-body interaction in the framework of the nuclear shell model. Yet, topics in atomic physics, mesoscopic physics, quantum information science and statistical mechanics of isolated finite quantum systems can also be addressed using these ensembles. This book addresses graduate students and researchers with an interest in applications of random matrix theory to the modeling of more complex physical systems and interactions, with applications such as statistical spectroscopy in mind.
Download or read book The Oxford Handbook of Random Matrix Theory written by Gernot Akemann and published by Oxford Handbooks. This book was released on 2015-08-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a foreword by Freeman Dyson, the handbook brings together leading mathematicians and physicists to offer a comprehensive overview of random matrix theory, including a guide to new developments and the diverse range of applications of this approach.In part one, all modern and classical techniques of solving random matrix models are explored, including orthogonal polynomials, exact replicas or supersymmetry.
Download or read book Introduction to Random Matrices written by Giacomo Livan and published by Springer. This book was released on 2018-01-16 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.
Download or read book Recent Perspectives in Random Matrix Theory and Number Theory written by F. Mezzadri and published by Cambridge University Press. This book was released on 2005-06-21 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a grounding in random matrix techniques applied to analytic number theory.
Download or read book Log Gases and Random Matrices LMS 34 written by Peter J. Forrester and published by Princeton University Press. This book was released on 2010-07-01 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.
Download or read book An Introduction to Random Matrices written by Greg W. Anderson and published by Cambridge University Press. This book was released on 2010 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Download or read book Random Matrices written by Madan Lal Mehta and published by Elsevier. This book was released on 2004-10-06 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random Matrices gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. - Presentation of many new results in one place for the first time - First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals - Fredholm determinants and Painlevé equations - The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities - Fredholm determinants and inverse scattering theory - Probability densities of random determinants
Download or read book Many Body Quantum Theory in Condensed Matter Physics written by Henrik Bruus and published by Oxford University Press. This book was released on 2004-09-02 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Download or read book From Random Walks to Random Matrices written by Jean Zinn-Justin and published by Oxford University Press. This book was released on 2019-06-19 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical physics is a cornerstone of modern physics and provides a foundation for all modern quantitative science. It aims to describe all natural phenomena using mathematical theories and models, and in consequence develops our understanding of the fundamental nature of the universe. This books offers an overview of major areas covering the recent developments in modern theoretical physics. Each chapter introduces a new key topic and develops the discussion in a self-contained manner. At the same time the selected topics have common themes running throughout the book, which connect the independent discussions. The main themes are renormalization group, fixed points, universality, and continuum limit, which open and conclude the work. The development of modern theoretical physics has required important concepts and novel mathematical tools, examples discussed in the book include path and field integrals, the notion of effective quantum or statistical field theories, gauge theories, and the mathematical structure at the basis of the interactions in fundamental particle physics, including quantization problems and anomalies, stochastic dynamical equations, and summation of perturbative series.