EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advancing Nuclear Medicine Through Innovation

Download or read book Advancing Nuclear Medicine Through Innovation written by National Research Council and published by National Academies Press. This book was released on 2007-09-11 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.

Book Targeted Radionuclide Therapy

Download or read book Targeted Radionuclide Therapy written by Tod W. Speer and published by Lippincott Williams & Wilkins. This book was released on 2012-03-28 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radioimmunotherapy, also known as systemic targeted radiation therapy, uses antibodies, antibody fragments, or compounds as carriers to guide radiation to the targets. It is a topic rapidly increasing in importance and success in treatment of cancer patients. This book represents a comprehensive amalgamation of the radiation physics, chemistry, radiobiology, tumor models, and clinical data for targeted radionuclide therapy. It outlines the current challenges and provides a glimpse at future directions. With significant advances in cell biology and molecular engineering, many targeting constructs are now available that will safely deliver these highly cytotoxic radionuclides in a targeted fashion. A companion website includes the full text and an image bank.

Book Isotopes for Medicine and the Life Sciences

Download or read book Isotopes for Medicine and the Life Sciences written by Institute of Medicine and published by National Academies Press. This book was released on 1995-01-27 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radioactive isotopes and enriched stable isotopes are used widely in medicine, agriculture, industry, and science, where their application allows us to perform many tasks more accurately, more simply, less expensively, and more quickly than would otherwise be possible. Indeed, in many casesâ€"for example, biological tracersâ€"there is no alternative. In a stellar example of "technology transfer" that began before the term was popular, the Department of Energy (DOE) and its predecessors has supported the development and application of isotopes and their transfer to the private sector. The DOE is now at an important crossroads: Isotope production has suffered as support for DOE's laboratories has declined. In response to a DOE request, this book is an intensive examination of isotope production and availability, including the education and training of those who will be needed to sustain the flow of radioactive and stable materials from their sources to the laboratories and medical care facilities in which they are used. Chapters include an examination of enriched stable isotopes; reactor and accelerator-produced radionuclides; partnerships among industries, national laboratories, and universities; and national isotope policy.

Book Physics and Radiobiology of Nuclear Medicine

Download or read book Physics and Radiobiology of Nuclear Medicine written by Gopal B. Saha and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: A basic knowledge of physics, instrumentation, and radiobiology is essential for nuclear physicians and technologists in the practice of nuclear medicine. The nuclear medicine specialty has matured over the past three decades to the extent that there is an increasing need for certification of physicians and technologists to practice nuclear medicine. Each year many medical residents take the American Board of Nuclear Medicine examination and the Ameri can Board of Radiology examination with special competency in Nuclear Radiology, and many technologists take the Registry examination in Nuclear Medicine. All these tests include a good portion of physics, instrumenta tion, and radiobiology in nuclear medicine. It is mandatory that radiology residents pass the physics section of the American Board of Radiology examination. This book is primarily addressed to this audience. In addition, anyone in terested in the basics of physics, instrumentation, and radiobiology in nuclear medicine should find this book useful.

Book The Supply of Medical Isotopes

Download or read book The Supply of Medical Isotopes written by and published by . This book was released on 2019 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report explores the main reasons behind the unreliable supply of Technetium-99m (Tc-99m) in health-care systems and policy options to address the issue. Tc-99m is used in 85% of nuclear medicine diagnostic scans performed worldwide – around 30 million patient examinations every year. These scans allow diagnoses of diseases in many parts of the human body, including the skeleton, heart and circulatory system, and the brain. Medical isotopes are subject to radioactive decay and have to be delivered just-in-time through a complex supply chain. However, ageing production facilities and a lack of investment have made the supply of Tc-99m unreliable. This report analyses the use and substitutability of Tc-99m in health care, health-care provider payment mechanisms for scans, and the structure of the supply chain. It concludes that the main reasons for unreliable supply are that production is not economically viable and that the structure of the supply chain prevents producers from charging prices that reflect the full costs of production and supply.

Book A History of Radionuclide Studies in the UK

Download or read book A History of Radionuclide Studies in the UK written by Ralph McCready and published by Springer. This book was released on 2016-03-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The British Nuclear Medicine Society celebrates its 50th Anniversary with this booklet, which reflects the research of many of the pioneers in the use of radionuclides for the diagnosis and therapy of human disease. Since 1949 there have been remarkable advances in radionuclide techniques and imaging equipment: from the first devices “home-made” in the many physics departments throughout the UK, to the sophisticated multimodality imagers now in everyday use in Nuclear Medicine. The BNMS has been instrumental in promoting the use of radionuclide techniques in the investigation of pathology by supporting and providing education, research and guidelines on the optimum use of radiation to help patients. The future of Nuclear Medicine is bright, thanks to improved imaging resolution, new radiopharmaceuticals, and new diagnostic and therapeutic techniques and procedures.

Book Radiopharmaceutical Chemistry

Download or read book Radiopharmaceutical Chemistry written by Jason S. Lewis and published by Springer. This book was released on 2019-04-02 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide to radiopharmaceutical chemistry. The stunning clinical successes of nuclear imaging and targeted radiotherapy have resulted in rapid growth in the field of radiopharmaceutical chemistry, an essential component of nuclear medicine and radiology. However, at this point, interest in the field outpaces the academic and educational infrastructure needed to train radiopharmaceutical chemists. For example, the vast majority of texts that address radiopharmaceutical chemistry do so only peripherally, focusing instead on nuclear chemistry (i.e. nuclear reactions in reactors), heavy element radiochemistry (i.e. the decomposition of radioactive waste), or solely on the clinical applications of radiopharmaceuticals (e.g. the use of PET tracers in oncology). This text fills that gap by focusing on the chemistry of radiopharmaceuticals, with key coverage of how that knowledge translates to the development of diagnostic and therapeutic radiopharmaceuticals for the clinic. The text is divided into three overarching sections: First Principles, Radiochemistry, and Special Topics. The first is a general overview covering fundamental and broad issues like “The Production of Radionuclides” and “Basics of Radiochemistry”. The second section is the main focus of the book. In this section, each chapter’s author will delve much deeper into the subject matter, covering both well established and state-of-the-art techniques in radiopharmaceutical chemistry. This section will be divided according to radionuclide and will include chapters on radiolabeling methods using all of the common nuclides employed in radiopharmaceuticals, including four chapters on the ubiquitously used fluorine-18 and a “Best of the Rest” chapter to cover emerging radionuclides. Finally, the third section of the book is dedicated to special topics with important information for radiochemists, including “Bioconjugation Methods,” “Click Chemistry in Radiochemistry”, and “Radiochemical Instrumentation.” This is an ideal educational guide for nuclear medicine physicians, radiologists, and radiopharmaceutical chemists, as well as residents and trainees in all of these areas.

Book An Introduction to the Physics of Nuclear Medicine

Download or read book An Introduction to the Physics of Nuclear Medicine written by Laura Harkness-Brennan and published by Morgan & Claypool Publishers. This book was released on 2018-06-27 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: The complexity and vulnerability of the human body has driven the development of a diverse range of diagnostic and therapeutic techniques in modern medicine. The Nuclear Medicine procedures of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Radionuclide Therapy are well-established in clinical practice and are founded upon the principles of radiation physics. This book will offer an insight into the physics of nuclear medicine by explaining the principles of radioactivity, how radionuclides are produced and administered as radiopharmaceuticals to the body and how radiation can be detected and used to produce images for diagnosis. The treatment of diseases such as thyroid cancer, hyperthyroidism and lymphoma by radionuclide therapy will also be explored.

Book Radioluminescence

    Book Details:
  • Author : Jan Lindström
  • Publisher : Linköping University Electronic Press
  • Release : 2021-03-24
  • ISBN : 917929684X
  • Pages : 61 pages

Download or read book Radioluminescence written by Jan Lindström and published by Linköping University Electronic Press. This book was released on 2021-03-24 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: A phosphor or scintillator is a material that will emit visible light when struck by ionising radiation. In the early days of diagnostic radiology, it was discovered that the radiation dose needed to get an image on a film, could be greatly reduced by inserting a fluorescent layer of a phosphor in direct contact with the film. Thus, introducing the step of converting the ionising radiation to light in a first step. Going forward in time, film has been replaced with photodetectors and there is now a variety of imaging x-ray systems, still based on phosphors and scintillators. There is continuous research going on to optimise between the radiation dose needed and a sufficient image quality. These factors tend to be in opposition to each other. It is a complicated task to optimise these imaging system and new phosphor materials emerges regularly. One of the key factors is the efficiency of the conversion from xrays to light. In this work this is denoted “extrinsic efficiency”. It is important since it largely determines the final dose to the patient needed for the imaging task. Most imaging x-ray detectors are based on phosphor or scintillator types where their imaging performance has been improved through tweaking of various parameters (light guide structure, higher density, light emission spectrum matching to photodetectors, delayed fluorescence quenching etc) One key factor that largely determines the extrinsic efficiency of a specific phosphor is the particle size. Larger particles result in a higher luminance of the phosphor for the same radiation dose as does as a thicker phosphor layer (to a limit). There exists already a battery of models describing various phosphor qualities. However, particle size and thickness have not been treated as a fully independent variables in previous model works. Indirectly, the influence of these parameters is accounted for, but the existing models were either considered too general, containing several complex parameters and factors to cover all kind of cases or too highly specialised to be easily applicable to fluorescent detectors in diagnostic radiology. The aim of this thesis is therefore to describe and assess a simple model denoted the “LAC-model” (after the original authors Lindström and Alm Carlsson), developed for a fluorescent layer using individual sub-layers defined by the particle size diameter. The model is thought to be a tool for quickly evaluating various particle size and fluorescent layer thickness combinations for a chosen phosphor and design. It may also serve as a more intuitive description of the underlying parameters influencing the final extrinsic efficiency. Further tests affirmed the validity of the model through measurements. The LACmodel produced results deviating a maximum of +5 % from luminescence measurements. During the development of the model various assumptions and simplifications were made. One assumption was the absence of a so called “dead layer”. This is a layer supposedly surrounding each particle decreasing the efficiency of converting x-rays to light. It is not completely “dead” as in inactive but is thought to have a reduced efficiency. This phenomenon was struggled with, when historically designing electron beam stimulated phosphors for various applications (i.e. displays, TV tubes etc). There are also articles reporting dead layer influence for x-ray detectors (usually spectrometers i.e. not for imaging). By introducing a dead layer in the LAC-model the effect of the layer was investigated and was found to result in a change of less than 8% for the extrinsic efficiency. It was also noted that sometimes a dead layer effect may emerge at surfaces of a scintillator slab but not necessarily connected to the phosphor particles themselves. Due to differences between phosphor material and the surroundings, an interface effect arose to compete with the process of inherent dead layers of the individual particles. It was found to be mostly negligible for x-rays in the studied energy and material range. However, an effect was shown for electrons as incident ionising radiation which could shed some light on the strangely neglected apparent dead layer created this way. Finally, applications, one involving developing a prototype for checking the light field radiation field coincidence, were evaluated for overall performance and the optimisation level of the applied fluorescent layer. Interesting findings were made during the development process: for the first time to the knowledge of the author, focus shift wandering was quantified in the corresponding movement of the x-ray field edge and a non-trivial discussion on the concept of an apparent light field edge resulted in a modified definition of the same. En fosfor eller scintillator är ett material som avger synligt ljus när det träffas av joniserande strålning. Inom diagnostisk radiologi upptäckte man i ett tidigt skede att stråldosen som behövdes för att få en bild på en röntgenfilm, reducerades kraftigt om man placerade ett fluorescerande skikt, en fosfor, i direkt kontakt med filmen. I nutid har film ersatts med fotodetektorer och det finns nu en mängd olika röntgenbildsystem men som fortfarande är baserade på fosforer och scintillatorer. Det pågår en kontinuerlig forskning för att optimera mellan erforderlig stråldos och en tillräcklig god diagnostisk bildkvalitet. Dessa faktorer tenderar att motverka varandra. Det är en komplicerad uppgift att optimera röntgenbildsystemen och nya fosformaterial dyker ständigt upp. En av de viktiga egenskaperna är fosforns omvandlingseffektivitet från röntgen till ljus. I detta arbete används benämningen ”extrinsisk (yttre) effektivitet". Denna egenskap är viktig eftersom den i stor utsträckning bestämmer den slutliga dosen till patienten som krävs för bilddiagnostiken. De flesta röntgendetektorer är baserade på fosfor- eller scintillatortyper där bildprestanda har förbättrats genom att utveckla olika parametrar (ljusledarstruktur, högre densitet, ljusemissionsspektrum som matchar fotodetektorer, minskad efterlysning etc.). En viktig faktor som i stor utsträckning bestämmer omvandlingseffektiviteten hos en specifik fosfor är partikelstorleken. Större partiklar resulterar i en högre luminescens (mer ljus) från fosforen för samma stråldos. Vilket också gäller för ett tjockare fosforlager (till en viss gräns!). Det finns redan fysikaliska modeller som beskriver olika fosforparametrar men partikelstorlek och fosfortjocklek har dock inte hanterats som fristående variabler i dessa modellarbeten. Istället har deras inverkan modellerats indirekt men det har gjort att de befintliga modellerna kan anses komplexa. De är antingen för generella som medför flera komplexa parametrar och faktorer för att täcka alla tänkbara varianter eller för specialiserade för att kunna tillämpas enkelt på fluorescerande detektorer i diagnostisk radiologi. Syftet med denna avhandling är därför att beskriva och analysera en praktisk modell betecknad ”LAC-modellen” (efter de ursprungliga författarna Lindström och Alm Carlsson). Den är utvecklad för ett fluorescerande block som består av flera underliggande skikt vars tjocklek bestäms av partiklarnas diameter. Avsikten med modellen är att den ska vara ett verktyg för att snabbt utvärdera olika varianter av partikelstorlek och tjockleks-kombinationer för en vald fosfor med i grunden samma design. Experiment har bekräftat modellens giltighet och mätresultat visar att modellresultaten avvek maximalt +5% från luminiscensmätningar. Utvecklingen av modellen krävde olika antaganden och förenklingar. Ett antagande var frånvaron av ett så kallat ”dött lager”. Det är ett skikt som antas omge varje partikel och som därför minskar omvandlingseffektiviteten från röntgen till ljus. Det är dock inte helt "dött" i meningen helt inaktivt men har en mindre förmåga att omvandla röntgen till ljus jämfört med fosforns huvudmaterial. Historisk sett har man försökt åtgärda detta fenomen under lång tid och speciellt för applikationer där man använt sig av elektronstrålar (dvs olika typer av displayer, TV-rör etc.). Just för elektroner har man sett att döda skiktet tenderar att växa med tiden. Det finns också artiklar som rapporterar en påverkan av röntgendetektorers funktion (vanligtvis dock för spektrometrar, dvs inte för avbildning). Genom att införa ett dött skikt i LAC-modellen undersöktes skiktets effekt och visade sig resultera i en förändring på mindre än 8% för effektiviteten. Det noterades också att ibland kan en dödskiktsliknande effekt uppstå vid ytor av ett scintillatorblock men inte nödvändigtvis pga. av själva fosforpartiklarnas ljusomvandlingsegenskaper. Då det uppstår skillnader mellan fosformaterialet och omgivningen får man en s.k. gränsskiktseffekt som s.a.s. konkurrerar med kemiskt döda skiktet på de enskilda partiklarna. De döda skiktens inverkan visade sig i princip försumbara för röntgenbild-detektorer - åtminstone inom det studerade energi- och materialområdet. En tydlig effekt kunde dock noteras för joniserande strålning i form av elektroner. Simuleringarna kunde ge en bättre bild av egenskaperna hos det döda skiktet som skapats på detta sätt. Slutligen utvärderades två applikationer med hjälp av LAC-modellen: en prototyp för kontroll av ljusfältets och strålfältets överenstämmelse i läge och position. Samt en etablerad produkt med samma användningsområde. I båda fallen undersöktes det fluorescerande skiktets optimeringsgrad. Intressanta resultat noterades under utvecklingsprocessen av prototypen: för första gången, så vitt författaren vet, kunde man kvantifiera röntgenrörs s.k. fokusvandring.

Book Radiation in Medicine

    Book Details:
  • Author : Institute of Medicine
  • Publisher : National Academies Press
  • Release : 1996-03-25
  • ISBN : 0309175674
  • Pages : 321 pages

Download or read book Radiation in Medicine written by Institute of Medicine and published by National Academies Press. This book was released on 1996-03-25 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Does radiation medicine need more regulation or simply better-coordinated regulation? This book addresses this and other questions of critical importance to public health and safety. The issues involved are high on the nation's agenda: the impact of radiation on public safety, the balance between federal and state authority, and the cost-benefit ratio of regulation. Although incidents of misadministration are rare, a case in Pennsylvania resulting in the death of a patient and the inadvertent exposure of others to a high dose of radiation drew attention to issues concerning the regulation of ionizing radiation in medicine and the need to examine current regulatory practices. Written at the request from the Nuclear Regulatory Commission (NRC), Radiation in Medicine reviews the regulation of ionizing radiation in medicine, focusing on the NRC's Medical Use Program, which governs the use of reactor-generated byproduct materials. The committee recommends immediate action on enforcement and provides longer term proposals for reform of the regulatory system. The volume covers: Sources of radiation and their use in medicine. Levels of risk to patients, workers, and the public. Current roles of the Nuclear Regulatory Commission, other federal agencies, and states. Criticisms from the regulated community. The committee explores alternative regulatory structures for radiation medicine and explains the rationale for the option it recommends in this volume. Based on extensive research, input from the regulated community, and the collaborative efforts of experts from a range of disciplines, Radiation in Medicine will be an important resource for federal and state policymakers and regulators, health professionals involved in radiation treatment, developers and producers of radiation equipment, insurance providers, and concerned laypersons.

Book Radionuclides in Medicine and Biology

Download or read book Radionuclides in Medicine and Biology written by Pinchas Czerniak and published by . This book was released on 1969 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Imaging

    Book Details:
  • Author : Shankar Vallabhajosula
  • Publisher : Springer Science & Business Media
  • Release : 2009-07-13
  • ISBN : 3540767355
  • Pages : 379 pages

Download or read book Molecular Imaging written by Shankar Vallabhajosula and published by Springer Science & Business Media. This book was released on 2009-07-13 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radioisotope-based molecular imaging probes provide unprecedented insight into biochemistry and function involved in both normal and disease states of living systems, with unbiased in vivo measurement of regional radiotracer activities offering very high specificity and sensitivity. No other molecular imaging technology including functional magnetic resonance imaging (fMRI) can provide such high sensitivity and specificity at a tracer level. The applications of this technology can be very broad ranging from drug development, pharmacokinetics, clinical investigations, and finally to routine diagnostics in radiology. The design and the development of radiopharmaceuticals for molecular imaging studies using PET/MicroPET or SPECT/MicroSPECT are a unique challenge. This book is intended for a broad audience and written with the main purpose of educating the reader on various aspects including potential clinical utility, limitations of drug development, and regulatory compliance and approvals.

Book Therapeutic Nuclear Medicine

Download or read book Therapeutic Nuclear Medicine written by Richard P. Baum and published by Springer. This book was released on 2014-08-16 with total page 922 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. This up-to-date, comprehensive book, written by world-renowned experts, discusses the basic principles of radionuclide therapy, explores in detail the available treatments, explains the regulatory requirements, and examines likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the role of the therapeutic nuclear physician in coordinating a diverse multidisciplinary team, which is central to the safe provision of treatment.

Book Health Risks of Radon and Other Internally Deposited Alpha Emitters

Download or read book Health Risks of Radon and Other Internally Deposited Alpha Emitters written by National Research Council and published by National Academies Press. This book was released on 1988-02-01 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes hazards from radon progeny and other alpha-emitters that humans may inhale or ingest from their environment. In their analysis, the authors summarize in one document clinical and epidemiological evidence, the results of animal studies, research on alpha-particle damage at the cellular level, metabolic pathways for internal alpha-emitters, dosimetry and microdosimetry of radionuclides deposited in specific tissues, and the chemical toxicity of some low-specific-activity alpha-emitters. Techniques for estimating the risks to humans posed by radon and other internally deposited alpha-emitters are offered, along with a discussion of formulas, models, methods, and the level of uncertainty inherent in the risk estimates.

Book Handbook of Radiopharmaceuticals

Download or read book Handbook of Radiopharmaceuticals written by Michael J. Welch and published by John Wiley & Sons. This book was released on 2003-01-17 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, authoritative and up-to-date reference for the newcomer to radiopharmaceuticals and those already in the field. Radiopharmaceuticals are used to detect and characterise disease processes, or normal biological function, in living cells, animals or humans. Used as tracer molecules, they map the distribution, uptake and metabolism of the molecule in clinical studies, basic research or applied research. The area of radiopharmaceuticals is expanding rapidly. The number of PET centers in the world is increasing at 20% per year, and many drug companies are utilising PET and other forms of radiopharmaceutical imaging to evaluate products. * Readers will find coverage on a number of important topics such as radionuclide production, PET and drug development, and regulations * Explains how to use radiopharmaceuticals for the diagnosis and therapy of cancer and other diseases * The editors and a majority of the contributors are from the United States

Book Radiopharmaceuticals for Therapy

Download or read book Radiopharmaceuticals for Therapy written by F. F. (Russ) Knapp and published by Springer. This book was released on 2016-01-20 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides detailed information on therapeutic radiopharmaceuticals and discusses emerging technologies which have potential for broad clinical implementation. Recent advances in molecular biology, radiopharmaceutical chemistry and radioisotope production have stimulated a new era for the use of radiopharmaceuticals for targeted radionuclide therapy (TRT). Emerging clinical trials include use of peptides and monoclonal antibodies radiolabeled with therapeutic radionuclides for cancer therapy. In addition, small molecules are used for the treatment of chronic diseases such as metastatic bone pain palliation and radiation synovectomy of inflammatory joints. In the interventional arena, therapy of primary and metastatic liver cancer and arterial restenosis following angioplasty of both the coronary and peripheral arteries are being explored. Reactor and accelerator production of therapeutic radioisotopes is also integrated into these discussions. The development and use of radiopharmaceutical targeting characteristics required for treatment of specific disease processes and how these are implemented for radiopharmaceutical design strategies are also described. Radiopharmaceuticals for Therapy will benefit audiences in nuclear medicine and radionuclide therapy and will thus prove an invaluable source of up-to-date information for students, radiopharmaceutical scientists and professionals working in the radiopharmacy and nuclear medicine specialties.

Book Nuclear Medicine Therapy

Download or read book Nuclear Medicine Therapy written by Janet F. Eary and published by CRC Press. This book was released on 2007-03-30 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: One in three of the 30 million Americans who are hospitalized are diagnosed or treated with nuclear medicine techniques. This text provides a succinct overview and detailed set of procedures and considerations for patient therapy with unsealed radioactivity sources. Serving as a complete literature reference for therapy with radiopharmaceuticals c