Download or read book Relativistic Fluid Dynamics In and Out of Equilibrium written by Paul Romatschke and published by Cambridge University Press. This book was released on 2019-05-09 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen unprecedented developments in the understanding of relativistic fluid dynamics in and out of equilibrium, with connections to astrophysics, cosmology, string theory, quantum information, nuclear physics and condensed matter physics. Romatschke and Romatschke offer a powerful new framework for fluid dynamics, exploring its connections to kinetic theory, gauge/gravity duality and thermal quantum field theory. Numerical algorithms to solve the equations of motion of relativistic dissipative fluid dynamics as well as applications to various systems are discussed. In particular, the book contains a comprehensive review of the theory background necessary to apply fluid dynamics to simulate relativistic nuclear collisions, including comparisons of fluid simulation results to experimental data for relativistic lead-lead, proton-lead and proton-proton collisions at the Large Hadron Collider (LHC). The book is an excellent resource for students and researchers working in nuclear physics, astrophysics, cosmology, quantum many-body systems and string theory.
Download or read book Phenomenology Of Ultra relativistic Heavy ion Collisions written by Wojciech Florkowski and published by World Scientific Publishing Company. This book was released on 2010-03-24 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to main ideas used in the physics of ultra-relativistic heavy-ion collisions. The links between basic theoretical concepts (discussed gradually from the elementary to more advanced level) and the results of experiments are outlined, so that experimentalists may learn more about the foundations of the models used by them to fit and interpret the data, while theoreticians may learn more about how different theoretical ideas are used in practical applications. The main task of the book is to collect the available information and establish a uniform picture of ultra-relativistic heavy-ion collisions. The properties of hot and dense matter implied by this picture are discussed comprehensively. In particular, the issues concerning the formation of the quark-gluon plasma in present and future heavy-ion experiments are addressed.
Download or read book Energy Research Abstracts written by and published by . This book was released on 1987 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Gauge String Duality Hot QCD and Heavy Ion Collisions written by Jorge Casalderrey-Solana and published by Cambridge University Press. This book was released on 2023-07-31 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Understanding the Origin of Matter written by David Blaschke and published by Springer Nature. This book was released on 2022-09-14 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at providing a solid basis for the education of the next generation of researchers in hot, dense QCD (Quantum ChromoDynamics) matter. This is a rapidly growing field at the interface of the smallest, i.e. subnuclear physics, and the largest scales, namely astrophysics and cosmology. The extensive lectures presented here are based on the material used at the training school of the European COST action THOR (Theory of hot matter in relativistic heavy-ion collisions). The book is divided in three parts covering ultrarelativistic heavy-ion collisions, several aspects related to QCD, and simulations of QCD and heavy-ion collisions. The scientific tools and methods discussed provide graduate students with the necessary skills to understand the structure of matter under extreme conditions of high densities, temperatures, and strong fields in the collapse of massive stars or a few microseconds after the big bang. In addition to the theory, the set of lectures presents hands-on material that includes an introduction to simulation programs for heavy-ion collisions, equations of state, and transport properties.
Download or read book Relativistic Heavy ion Collisions written by Rudolph C. Hwa and published by CRC Press. This book was released on 1990 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers of the June 1989 meeting in Beijing by the China Center of Advanced Science and Technology. This small book covers nucleus- nucleus collisions, states of the vacuum, and highly relativistic heavy ions in the experimental realm. Theoretical papers deal with quark-gluon plasma, and relativistic heavy ion collisions. Annotation copyrighted by Book News, Inc., Portland, OR
Download or read book Principles Of Phase Structures In Particle Physics written by Hildegard Meyer-ortmanns and published by World Scientific. This book was released on 2006-12-06 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: The phase structure of particle physics shows up in matter at extremely high densities and/or temperatures as they were reached in the early universe, shortly after the big bang, or in heavy-ion collisions, as they are performed nowadays in laboratory experiments. In contrast to phase transitions of condensed matter physics, the underlying fundamental theories are better known than their macroscopic manifestations in phase transitions. These theories are quantum chromodynamics for the strong interaction part and the electroweak part of the Standard Model for the electroweak interaction. It is their non-Abelian gauge structure that makes it a big challenge to predict the type of phase conversion between phases of different symmetries and different particle contents. The book is about a variety of analytical and numerical tools that are needed to study the phase structure of particle physics. To these belong convergent and asymptotic expansions in strong and weak couplings, dimensional reduction, renormalization group studies, gap equations, Monte Carlo simulations with and without fermions, finite-size and finite-mass scaling analyses, and the approach of effective actions as supplement to first-principle calculations.
Download or read book Quark Gluon Plasma 3 written by Rudolph C. Hwa and published by World Scientific. This book was released on 2004 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation. Text reviews the major topics in Quark-Gluon Plasma, including: the QCD phase diagram, the transition temperature, equation of state, heavy quark free energies, and thermal modifications of hadron properties. Includes index, references, and appendix. For researchers and practitioners.
Download or read book Melting Hadrons Boiling Quarks From Hagedorn Temperature to Ultra Relativistic Heavy Ion Collisions at CERN written by Johann Rafelski and published by Springer. This book was released on 2015-10-21 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gaździcki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes. About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Bor n in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.
Download or read book Ultrarelativistic Heavy Ion Collisions written by Ramona Vogt and published by Elsevier. This book was released on 2007-06-04 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed for advanced undergraduate and graduate students in high energy heavy-ion physics. It is relevant for students who will work on topics being explored at RHIC and the LHC. In the first part, the basic principles of these studies are covered including kinematics, cross sections (including the quark model and parton distribution functions), the geometry of nuclear collisions, thermodynamics, hydrodynamics and relevant aspects of lattice gauge theory at finite temperature. The second part covers some more specific probes of heavy-ion collisions at these energies: high mass thermal dileptons, quarkonium and hadronization. The second part also serves as extended examples of concepts learned in the previous part. Both parts contain examples in the text as well as exercises at the end of each chapter.- Designed for students and newcomers to the field- Focuses on hard probes and QCD- Covers all aspects of high energy heavy-ion physics- Includes worked example problems and exercises
Download or read book Quark gluon Plasma 4 written by Rudolph C. Hwa and published by World Scientific. This book was released on 2010 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a review volume containing articles written by experts on current theoretical topics in the subject of Quark-Gluon Plasma created in heavy-ion collisions at high energy. It is the fourth volume in the series with the same title sequenced numerically. The articles are written in a pedagogical style so that they can be helpful to a wide range of researchers from graduate students to mature physicists who have not worked previously on the subject. A reader should be able to learn from the reviews without having extensive knowledge of the background literature.
Download or read book Introduction to Relativistic Heavy Ion Collisions written by L. P. Csernai and published by . This book was released on 1994-05-10 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Relativistic Heavy Ion Collisions László P. Csernai University of Bergen, Norway Written for postgraduates and advanced undergraduates in physics, this clear and concise work covers a wide range of subjects from intermediate to ultra-relativistic energies, thus providing an introductory overview of heavy ion physics. The reader is introduced to essential principles in heavy ion physics through a variety of questions, with answers, of varying difficulty. This timely text is based on a series of well received lectures given by Professor L. Csernai at the University of Minnesota, and the University of Bergen, where the author is based.
Download or read book Artificial Black Holes written by Mario Novello and published by World Scientific. This book was released on 2002-10-04 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various “analog models”. These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters — written by experts in general relativity, particle physics, and condensed matter physics — that explore various aspects of this two-way traffic.
Download or read book Analogue Gravity Phenomenology written by Daniele Faccio and published by Springer. This book was released on 2013-08-13 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analogue Gravity Phenomenology is a collection of contributions that cover a vast range of areas in physics, ranging from surface wave propagation in fluids to nonlinear optics. The underlying common aspect of all these topics, and hence the main focus and perspective from which they are explained here, is the attempt to develop analogue models for gravitational systems. The original and main motivation of the field is the verification and study of Hawking radiation from a horizon: the enabling feature is the possibility to generate horizons in the laboratory with a wide range of physical systems that involve a flow of one kind or another. The years around 2010 and onwards witnessed a sudden surge of experimental activity in this expanding field of research. However, building an expertise in analogue gravity requires the researcher to be equipped with a rather broad range of knowledge and interests. The aim of this book is to bring the reader up to date with the latest developments and provide the basic background required in order to appreciate the goals, difficulties, and success stories in the field of analogue gravity. Each chapter of the book treats a different topic explained in detail by the major experts for each specific discipline. The first chapters give an overview of black hole spacetimes and Hawking radiation before moving on to describe the large variety of analogue spacetimes that have been proposed and are currently under investigation. This introductory part is then followed by an in-depth description of what are currently the three most promising analogue spacetime settings, namely surface waves in flowing fluids, acoustic oscillations in Bose-Einstein condensates and electromagnetic waves in nonlinear optics. Both theory and experimental endeavours are explained in detail. The final chapters refer to other aspects of analogue gravity beyond the study of Hawking radiation, such as Lorentz invariance violations and Brownian motion in curved spacetimes, before concluding with a return to the origins of the field and a description of the available observational evidence for horizons in astrophysical black holes.
Download or read book Vortices in Unconventional Superconductors and Superfluids written by Rudolf Huebener and published by Springer Science & Business Media. This book was released on 2002-01-22 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological defects are generic in continuous media. In the relativistic quantum vacuum they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids, low-density atomic Bose-Einstein condensates and neutron stars as quantized vortex lines. This collection of articles by leading scientists presents a modern treatment of the physics of vortex matter, mainly applied to unconventional superconductors and superfluids but with extensions to other areas of physics.
Download or read book Finite Temperature Field Theory written by Joseph I. Kapusta and published by Cambridge University Press. This book was released on 2023-07-31 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Basics of Thermal Field Theory written by Mikko Laine and published by Springer. This book was released on 2016-06-09 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from the study of phase transitions and particle production rate computations, to the concept of transport and damping coefficients that play a ubiquitous role in current developments. The book serves as a self-contained textbook on relativistic thermal field theory for undergraduate and graduate students of theoretical high-energy physics.