EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantum Transport in HgTe Topological Insulator Nanostructures

Download or read book Quantum Transport in HgTe Topological Insulator Nanostructures written by Johannes Ziegler and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topological Insulators

    Book Details:
  • Author : Gregory Tkachov
  • Publisher : CRC Press
  • Release : 2015-10-14
  • ISBN : 9814613266
  • Pages : 180 pages

Download or read book Topological Insulators written by Gregory Tkachov and published by CRC Press. This book was released on 2015-10-14 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of dynamic developments that have occurred in condensed matter physics after the recent discovery of a new class of electronic materials: topological insulators. A topological insulator is a material that behaves as a band insulator in its interior, while acting as a metallic conductor at its surface. The surface current car

Book Topological Insulators

    Book Details:
  • Author : C. Brüne
  • Publisher : Elsevier Inc. Chapters
  • Release : 2013-11-23
  • ISBN : 0128086866
  • Pages : 27 pages

Download or read book Topological Insulators written by C. Brüne and published by Elsevier Inc. Chapters. This book was released on 2013-11-23 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: This chapter will focus on the experimental properties of the quantum spin Hall effect in HgTe quantum well structures. HgTe quantum wells above a critical thickness are 2-dimensional topological insulators. The most prominent signature of the non-trivial topology in these systems is the occurrence of the quantum spin Hall effect when the Fermi energy is located inside the bulk band gap. We will present the main experimental results we obtained for transport in the quantum spin Hall regime and discuss how they confirm the prediction of the quantum spin Hall effect as a helical edge state system consisting of two counterpropagating oppositely spin polarized edge states.

Book Topological Insulators

Download or read book Topological Insulators written by Frank Ortmann and published by John Wiley & Sons. This book was released on 2015-04-07 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic states, the Dirac point, quantum Hall effects and Majorana fermions are illuminated in individual chapters and are described in a clear and logical form. Written by an international team of experts, many of them directly involved in the very first discovery of topological insulators, the book provides the readers with the knowledge they need to understand the electronic behavior of these unique materials. Being more than a reference work, this book is essential for newcomers and advanced researchers working in the field of topological insulators.

Book Quantum Transport Study in 3D Topological Insulators Nanostructures

Download or read book Quantum Transport Study in 3D Topological Insulators Nanostructures written by Louis Veyrat and published by . This book was released on 2016* with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topological Insulators

Download or read book Topological Insulators written by Frank Ortmann and published by John Wiley & Sons. This book was released on 2015-06-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic states, the Dirac point, quantum Hall effects and Majorana fermions are illuminated in individual chapters and are described in a clear and logical form. Written by an international team of experts, many of them directly involved in the very first discovery of topological insulators, the book provides the readers with the knowledge they need to understand the electronic behavior of these unique materials. Being more than a reference work, this book is essential for newcomers and advanced researchers working in the field of topological insulators.

Book Topological Insulators

    Book Details:
  • Author : Ke He
  • Publisher : Elsevier Inc. Chapters
  • Release : 2013-11-23
  • ISBN : 0128086904
  • Pages : 36 pages

Download or read book Topological Insulators written by Ke He and published by Elsevier Inc. Chapters. This book was released on 2013-11-23 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: Material is a key to the experimental observation of novel quantum phenomena predicted in topological insulators. In this chapter, we review the recent theoretic and experimental efforts devoted to improving the existing topological insulator materials and exploring new topological insulators. The emphasis is on growth and engineering of the properties of topological insulator thin films by molecular beam epitaxy for realization of various quantum effects.

Book Spin Orbitronics And Topological Properties Of Nanostructures   Lecture Notes Of The Twelfth International School On Theoretical Physics

Download or read book Spin Orbitronics And Topological Properties Of Nanostructures Lecture Notes Of The Twelfth International School On Theoretical Physics written by Vitalii K Dugaev and published by World Scientific. This book was released on 2017-11-24 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents lecture notes of the 12th International School of Theoretical Physics held in 2016 in Rzeszów, Poland. The lectures serve as an introduction for young physicists starting their career in condensed matter theoretical physics. The book provides a comprehensive overview of modern ideas and advances in theories and experiments of new materials, quantum nanostructures as well as new mathematical methods.This lecture note is an essential source of reference for physicists and materials scientists. It is also a suitable reading for graduate students.

Book Topological Insulators

    Book Details:
  • Author : Jeroen B. Oostinga
  • Publisher : Elsevier Inc. Chapters
  • Release : 2013-11-23
  • ISBN : 0128086890
  • Pages : 48 pages

Download or read book Topological Insulators written by Jeroen B. Oostinga and published by Elsevier Inc. Chapters. This book was released on 2013-11-23 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of topological insulators as a new state of matter has generated immense interest in this new class of materials. Three-dimensional (3D) topological insulators are characterized by the presence of an odd number of families of Dirac fermions—ideally one- at each of their surfaces. Angle-resolved photoemission experiments have demonstrated the presence of the expected Dirac fermions, but it is clear that to explore the electronic properties of these systems, transport measurements in many different device geometries are called for, just as it has been the case for Dirac fermions in graphene. In this chapter we review the status of transport studies through 3D topological insulators as of early summer 2012, after that a first generation of experiments has been performed. The results provide many different indications of the presence of surface fermions, as well as evidence of their Dirac nature. However, no textbook “manifestation” of surface Dirac fermions has been reported so far in these materials. Indeed, experiments also show that investigations are severely hampered by the material quality in most cases, because of the effect of high conductivity in the bulk, of low carrier mobility, of technical difficulties hampering device fabrication, and other reasons. In this chapter, we attempt to give a balanced overview of the work done during this first period and of the results obtained, stressing the implications and the limits of many of the observations that have been reported in the literature.

Book Quantum Transport in Nanostructures

Download or read book Quantum Transport in Nanostructures written by Michael Wimmer and published by . This book was released on 2009 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chalcogenide

Download or read book Chalcogenide written by Xinyu Liu and published by Woodhead Publishing. This book was released on 2019-11-14 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chalcogenide: From 3D to 2D and Beyond reviews graphene-like 2D chalcogenide systems that include topological insulators, interesting thermoelectric structures, and structures that exhibit a host of spin phenomena that are unique to 2D and lower-dimensional geometries. The book describes state-of-the-art materials in growth and fabrication, magnetic, electronic and optical characterization, as well as the experimental and theoretical aspects of this family of materials. Bulk chalcogenides, chalcogenide films, their heterostructures and low-dimensional chalcogenide-based quantum structures are discussed. Particular attention is paid to findings that are relevant to the continued search for new physical phenomena and new functionalities. Finally, the book covers the enormous opportunities that have emerged as it has become possible to achieve lower-dimensional chalcogenide structures by epitaxial techniques. Provides readers with foundational information on the materials growth, fabrication, magnetic, electronic and optical characterization of chalcogenide materials Discusses not only bulk chalcogenides and chalcogenide thin films, but also two-dimensional chalcogenide materials systems Reviews the most important applications in optoelectronics, photovoltaics and thermoelectrics

Book Topological Insulators

    Book Details:
  • Author : Chaoxing Liu
  • Publisher : Elsevier Inc. Chapters
  • Release : 2013-11-23
  • ISBN : 012808684X
  • Pages : 42 pages

Download or read book Topological Insulators written by Chaoxing Liu and published by Elsevier Inc. Chapters. This book was released on 2013-11-23 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the chapter, we review two proto-type models of topological insulators, namely the Bernevig-Hughes-Zhang model for HgTe quantum wells and the four band model for family of materials. Based on these two simple models, we discuss helical edge/surface states of topological insulators, as well as their exotic physical properties, including total angular momentum, spin and orbital textures, topological stability, and topological response of the surface states. Moreover, we summarize the basic principle to search for topological insulators from these two models and discuss the related topological materials.

Book Electronic Transport in Topological Insulator Nanostructures

Download or read book Electronic Transport in Topological Insulator Nanostructures written by Seung Sae Hong and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological insulators are states of quantum matter with an insulating gap in the bulk and gapless surface states. The exotic spin nature of the surface electrons, resulting in topological protection from localization, suggests unconventional applications in electronics as well as fundamental scientific interests. While these exotic states have been investigated via surface-sensitive techniques intensively, electronic transport device, crucial to realize topological electronics, has lagged behind due to material challenges in candidate materials. Topological insulator nanostructure is an attractive candidate for device applications, as the size effect and boundary conditions offer a unique way to enhance / tailor the surface electron transport. In this dissertation, we first describe the design principle of topological insulator nanomaterials, with an emphasis on bismuth selenide. Two major material challenges, dominant bulk electron contribution and low surface mobility due to surface oxidation, are discussed and the solutions via nanomaterial synthesis are achieved. Elemental doping and core-shell heterostructures are developed to suppress bulk carriers and to achieve high surface electron mobility. The high electronic mobility allows us to observe Shubnikov-de Haas oscillations originated from the surface Dirac fermions. In addition to the material development, we also investigate transport properties from helical nature of the surface electrons. 1D modes of surface electrons in bismuth selenide nanowire Aharonov-Bohm interferometers is a unique electronic state providing an opportunity to reveal helical spin nature and topological protection via transport. The helical 1D mode, directly observed near the Dirac point under half magnetic flux quantum, is robust against disorder but fragile against a magnetic field breaking time-reversal-symmetry. The newly discovered 1D helical mode is expected to open a new direction to study topological electronics, as well as future applications.

Book Topological Insulators

Download or read book Topological Insulators written by Shun-Qing Shen and published by Springer Science & Business Media. This book was released on 2013-01-11 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.

Book Strong and Weak Topology Probed by Surface Science

Download or read book Strong and Weak Topology Probed by Surface Science written by Christian Pauly and published by Springer. This book was released on 2016-01-22 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Christian Pauly demonstrates the strong topological properties of the technologically relevant phase change materials Sb2Te3 and Ge2Sb2Te5 by using two powerful techniques for mapping the surface electronic structure: scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES). In the case of a phase change material, this opens up the possibility of switching between an insulating amorphous and a conducting topological phase on nanosecond-time scales. Moreover, the author presents first experimental results of a weak topological insulator, namely on the bismuth-based graphene-like sheet system Bi14Rh3I9, revealing a topologically protected one-dimensional edge channel as its fingerprint. The edge state is as narrow as 0.8 nm, making it extremely attractive to device physics. Those strong and weak topological insulators are a new phase of quantum matter giving rise to robust boundary states which are protected from backscattering and localization.

Book Quantum Transport in 2D Topological Insulator Device

Download or read book Quantum Transport in 2D Topological Insulator Device written by 李欣翰 and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topological Insulators

Download or read book Topological Insulators written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2024-01-15 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: A topological insulator is an area that has yet to be fully explored and developed. The charge-induced bandgap fluctuation in the best-known bismuth-chalcogenide-based topological insulators is approximately 10MeV in magnitude. The major focus has shifted to the investigation of the presence of high-symmetry electronic bands as well as the utilization of easily produced materials. As the subject of topological insulators is still in the nascent stage, there is growing research and knowledge in the emerging field. This book is intended to provide the readers with an understanding of the needs and application of these materials. Keywords: Topological Insulators, Insulators, One-Dimensional Topological Insulators, Graphene, Magnetic Topological Insulator, Antiferromagnetic Phase, Ferromagnetic Phase, Topological Superconductor, Nonlinear Optical Behavior, Saturable Absorber, Quantum, Band Gap, Photonic Topological Insulators.