Download or read book Quantum Hamiltonian Complexity written by Sevag Gharibian and published by . This book was released on 2015-09-30 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. It provides a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field.
Download or read book FSTTCS 2004 Foundations of Software Technology and Theoretical Computer Science written by Kamal Lodaya and published by Springer Science & Business Media. This book was released on 2004-12-02 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 24th International Conference on the Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2004, held in Chennai, India, in December 2004. The 35 revised full papers presented together with 5 invited papers were carefully reviewed and selected from 176 submissions. The papers address a broad variety of current issues in software science, programming theory, systems design and analysis, formal methods, mathematical logic, mathematical foundations, discrete mathematics, combinatorial mathematics, complexity theory, automata theory, and theoretical computer science in general.
Download or read book Computational Complexity written by Sanjeev Arora and published by Cambridge University Press. This book was released on 2009-04-20 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Download or read book Classical and Quantum Computation written by Alexei Yu. Kitaev and published by American Mathematical Soc.. This book was released on 2002 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.
Download or read book Quantum Proofs written by Thomas Vidick and published by Foundations and Trends (R) in Theoretical Computer Science. This book was released on 2016-03-30 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Proofs provides an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, it discusses non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class QSZK, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*. Quantum Proofs is mainly intended for non-specialists having a basic background in complexity theory and quantum information. A typical reader may be a student or researcher in either area desiring to learn about the fundamentals of the (actively developing) theory of quantum interactive proofs.
Download or read book Quantum Information Theory written by Mark Wilde and published by Cambridge University Press. This book was released on 2013-04-18 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, graduate-level textbook that develops from scratch classical results as well as advances of the past decade.
Download or read book Galileo Unbound written by David D. Nolte and published by Oxford University Press. This book was released on 2018-07-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Download or read book Quantum Computing Since Democritus written by Scott Aaronson and published by Cambridge University Press. This book was released on 2013-03-14 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.
Download or read book A Mathematical Introduction to Electronic Structure Theory written by Lin Lin and published by SIAM. This book was released on 2019-06-05 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.
Download or read book Quantum Computing written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.
Download or read book Tensor Network Contractions written by Shi-Ju Ran and published by Springer Nature. This book was released on 2020-01-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.
Download or read book Three Lectures on Complexity and Black Holes written by Leonard Susskind and published by Springer Nature. This book was released on 2020-05-11 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: These three lectures cover a certain aspect of complexity and black holes, namely the relation to the second law of thermodynamics. The first lecture describes the meaning of quantum complexity, the analogy between entropy and complexity, and the second law of complexity. Lecture two reviews the connection between the second law of complexity and the interior of black holes. Prof. L. Susskind discusses how firewalls are related to periods of non-increasing complexity which typically only occur after an exponentially long time. The final lecture is about the thermodynamics of complexity, and “uncomplexity” as a resource for doing computational work. The author explains the remarkable power of “one clean qubit,” in both computational terms and in space-time terms. This book is intended for graduate students and researchers who want to take the first steps towards the mysteries of black holes and their complexity.
Download or read book Statistical Mechanics written by James Sethna and published by OUP Oxford. This book was released on 2006-04-07 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.
Download or read book A Guide to Monte Carlo Simulations in Statistical Physics written by David P. Landau and published by Cambridge University Press. This book was released on 2005-09 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This updated edition deals with the Monte Carlo simulation of complex physical systems encountered in condensed-matter physics, statistical mechanics, and related fields. It contains many applications, examples, and exercises to help the reader. It is an excellent guide for graduate students and researchers who use computer simulations in their research.
Download or read book Descriptional Complexity of Formal Systems written by Michal Hospodár and published by Springer. This book was released on 2019-07-08 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 21st International Conference on Descriptional Complexity of Format Systems, DCFS 2019, held in Košice, Slovakia, in July 2019. The 18 full papers presented in this volume were carefully reviewed and selected from 25 submissions. The book also contains 4 invited talks. They deal with all aspects of descriptional complexity and costs of description of objects in various computational models, such as Turing machines, pushdown automata, finite automata, grammars, and others.
Download or read book Condensed Matter Field Theory written by Alexander Altland and published by Cambridge University Press. This book was released on 2010-03-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Download or read book Topological Quantum Computation written by Zhenghan Wang and published by American Mathematical Soc.. This book was released on 2010 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.