Download or read book Quantum Computation with Topological Codes written by Keisuke Fujii and published by Springer. This book was released on 2015-12-15 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.
Download or read book Quantum Error Correction written by Daniel A. Lidar and published by Cambridge University Press. This book was released on 2013-09-12 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on methods for quantum error correction, this book is invaluable for graduate students and experts in quantum information science.
Download or read book Topological Quantum Computation written by Zhenghan Wang and published by American Mathematical Soc.. This book was released on 2010 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.
Download or read book Quantum Information Processing and Quantum Error Correction written by Ivan Djordjevic and published by Academic Press. This book was released on 2012-04-16 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits
Download or read book Introduction to Topological Quantum Computation written by Jiannis K. Pachos and published by Cambridge University Press. This book was released on 2012-04-12 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining physics, mathematics and computer science, topological quantum computation is a rapidly expanding research area focused on the exploration of quantum evolutions that are immune to errors. In this book, the author presents a variety of different topics developed together for the first time, forming an excellent introduction to topological quantum computation. The makings of anyonic systems, their properties and their computational power are presented in a pedagogical way. Relevant calculations are fully explained, and numerous worked examples and exercises support and aid understanding. Special emphasis is given to the motivation and physical intuition behind every mathematical concept. Demystifying difficult topics by using accessible language, this book has broad appeal and is ideal for graduate students and researchers from various disciplines who want to get into this new and exciting research field.
Download or read book Quantum Computing and Quantum Communications written by Colin P. Williams and published by Springer. This book was released on 2003-05-20 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers presented at the First NASA International Conference on Quantum Computing and Quantum Communications, QCQC'98, held in Palm Springs, California, USA in February 1998. As the record of the first large-scale meeting entirely devoted to quantum computing and communications, this book is a unique survey of the state-of-the-art in the area. The 43 carefully reviewed papers are organized in topical sections on entanglement and quantum algorithms, quantum cryptography, quantum copying and quantum information theory, quantum error correction and fault-tolerant quantum computing, and embodiments of quantum computers.
Download or read book Introduction To Quantum Computation And Information written by Adriano Barenco and published by World Scientific. This book was released on 1998-10-15 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a pedagogical introduction to the subjects of quantum information and quantum computation. Topics include non-locality of quantum mechanics, quantum computation, quantum cryptography, quantum error correction, fault-tolerant quantum computation as well as some experimental aspects of quantum computation and quantum cryptography. Only knowledge of basic quantum mechanics is assumed. Whenever more advanced concepts and techniques are used, they are introduced carefully. This book is meant to be a self-contained overview. While basic concepts are discussed in detail, unnecessary technical details are excluded. It is well-suited for a wide audience ranging from physics graduate students to advanced researchers.This book is based on a lecture series held at Hewlett-Packard Labs, Basic Research Institute in the Mathematical Sciences (BRIMS), Bristol from November 1996 to April 1997, and also includes other contributions.
Download or read book Introduction to Topological Quantum Matter Quantum Computation written by Tudor D. Stanescu and published by CRC Press. This book was released on 2016-12-19 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and emphasizes the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the torric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems. Quantum computation is also presented using a broad perspective, which includes fundamental aspects of quantum mechanics, such as Bell's theorem, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and elements of classical and quantum information theory.
Download or read book Classical and Quantum Computation written by Alexei Yu. Kitaev and published by American Mathematical Soc.. This book was released on 2002 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.
Download or read book Frontiers of Engineering written by National Academy of Engineering and published by National Academies Press. This book was released on 2019-02-28 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents papers on the topics covered at the National Academy of Engineering's 2018 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2018 symposium was held September 5-7 and hosted by MIT Lincoln Laboratory in Lexington, Massachusetts. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.
Download or read book Quantum Codes for Topological Quantum Computation written by Clarice Dias de Albuquerque and published by Springer Nature. This book was released on 2022-08-04 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a structured algebraic and geometric approach to the classification and construction of quantum codes for topological quantum computation. It combines key concepts in linear algebra, algebraic topology, hyperbolic geometry, group theory, quantum mechanics, and classical and quantum coding theory to help readers understand and develop quantum codes for topological quantum computation. One possible approach to building a quantum computer is based on surface codes, operated as stabilizer codes. The surface codes evolved from Kitaev's toric codes, as a means to developing models for topological order by using qubits distributed on the surface of a toroid. A significant advantage of surface codes is their relative tolerance to local errors. A second approach is based on color codes, which are topological stabilizer codes defined on a tessellation with geometrically local stabilizer generators. This book provides basic geometric concepts, like surface geometry, hyperbolic geometry and tessellation, as well as basic algebraic concepts, like stabilizer formalism, for the construction of the most promising classes of quantum error-correcting codes such as surfaces codes and color codes. The book is intended for senior undergraduate and graduate students in Electrical Engineering and Mathematics with an understanding of the basic concepts of linear algebra and quantum mechanics.
Download or read book Fundamentals of Quantum Computing written by Venkateswaran Kasirajan and published by Springer Nature. This book was released on 2021-06-21 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory book on quantum computing includes an emphasis on the development of algorithms. Appropriate for both university students as well as software developers interested in programming a quantum computer, this practical approach to modern quantum computing takes the reader through the required background and up to the latest developments. Beginning with introductory chapters on the required math and quantum mechanics, Fundamentals of Quantum Computing proceeds to describe four leading qubit modalities and explains the core principles of quantum computing in detail. Providing a step-by-step derivation of math and source code, some of the well-known quantum algorithms are explained in simple ways so the reader can try them either on IBM Q or Microsoft QDK. The book also includes a chapter on adiabatic quantum computing and modern concepts such as topological quantum computing and surface codes. Features: o Foundational chapters that build the necessary background on math and quantum mechanics. o Examples and illustrations throughout provide a practical approach to quantum programming with end-of-chapter exercises. o Detailed treatment on four leading qubit modalities -- trapped-ion, superconducting transmons, topological qubits, and quantum dots -- teaches how qubits work so that readers can understand how quantum computers work under the hood and devise efficient algorithms and error correction codes. Also introduces protected qubits - 0-π qubits, fluxon parity protected qubits, and charge-parity protected qubits. o Principles of quantum computing, such as quantum superposition principle, quantum entanglement, quantum teleportation, no-cloning theorem, quantum parallelism, and quantum interference are explained in detail. A dedicated chapter on quantum algorithm explores both oracle-based, and Quantum Fourier Transform-based algorithms in detail with step-by-step math and working code that runs on IBM QisKit and Microsoft QDK. Topics on EPR Paradox, Quantum Key Distribution protocols, Density Matrix formalism, and Stabilizer formalism are intriguing. While focusing on the universal gate model of quantum computing, this book also introduces adiabatic quantum computing and quantum annealing. This book includes a section on fault-tolerant quantum computing to make the discussions complete. The topics on Quantum Error Correction, Surface codes such as Toric code and Planar code, and protected qubits help explain how fault tolerance can be built at the system level.
Download or read book Quantum Information and Quantum Computing written by Mikio Nakahara and published by World Scientific. This book was released on 2013 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The open research center project "Interdisciplinary fundamental research toward realization of a quantum computer" has been supported by the Ministry of Education, Japan for five years. This is a collection of the research outcomes by the members engaged in the project. To make the presentation self-contained, it starts with an overview by Mikio Nakahara, which serves as a concise introduction to quantum information and quantum computing. Subsequent contributions include subjects from physics, chemistry, mathematics, and information science, reflecting upon the wide variety of scientists working under this project. These contributions introduce NMR quantum computing and related techniques, number theory and coding theory, quantum error correction, photosynthesis, non-classical correlations and entanglement, neutral atom quantum computer, among others. Each of the contributions will serve as a short introduction to these cutting edge research fields.
Download or read book Quantum Computing written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.
Download or read book Quantum Computation and Quantum Information written by Michael A. Nielsen and published by Cambridge University Press. This book was released on 2010-12-09 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.
Download or read book Memorial Volume For Shoucheng Zhang written by Xiaoliang Qi and published by World Scientific. This book was released on 2021-08-24 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book honors the remarkable science and life of Shoucheng Zhang, a condensed matter theorist known for his work on topological insulators, the quantum Hall effect, spintronics, superconductivity, and other fields. It contains the contributions displayed at the Shoucheng Zhang Memorial Workshop held on May 2-4, 2019 at Stanford University.
Download or read book Quantum Computing Since Democritus written by Scott Aaronson and published by Cambridge University Press. This book was released on 2013-03-14 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.