Download or read book Quantitative Neuroscience written by Panos M. Pardalos and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in the field of signal processing, nonlinear dynamics, statistics, and optimization theory, combined with marked improvement in instrumenta tion and development of computers systems, have made it possible to apply the power of mathematics to the task of understanding the human brain. This verita ble revolution already has resulted in widespread availability of high resolution neuroimaging devices in clinical as well as research settings. Breakthroughs in functional imaging are not far behind. Mathematical tech niques developed for the study of complex nonlinear systems and chaos already are being used to explore the complex nonlinear dynamics of human brain phys iology. Global optimization is being applied to data mining expeditions in an effort to find knowledge in the vast amount of information being generated by neuroimaging and neurophysiological investigations. These breakthroughs in the ability to obtain, store and analyze large datasets offer, for the first time, exciting opportunities to explore the mechanisms underlying normal brain func tion as well as the affects of diseases such as epilepsy, sleep disorders, movement disorders, and cognitive disorders that affect millions of people every year. Ap plication of these powerful tools to the study of the human brain requires, by necessity, collaboration among scientists, engineers, neurobiologists and clini cians. Each discipline brings to the table unique knowledge, unique approaches to problem solving, and a unique language.
Download or read book Quantitative Neuroscience written by Panos M. Pardalos and published by Springer Science & Business Media. This book was released on 2004-01-31 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in the field of signal processing, nonlinear dynamics, statistics, and optimization theory, combined with marked improvement in instrumenta tion and development of computers systems, have made it possible to apply the power of mathematics to the task of understanding the human brain. This verita ble revolution already has resulted in widespread availability of high resolution neuroimaging devices in clinical as well as research settings. Breakthroughs in functional imaging are not far behind. Mathematical tech niques developed for the study of complex nonlinear systems and chaos already are being used to explore the complex nonlinear dynamics of human brain phys iology. Global optimization is being applied to data mining expeditions in an effort to find knowledge in the vast amount of information being generated by neuroimaging and neurophysiological investigations. These breakthroughs in the ability to obtain, store and analyze large datasets offer, for the first time, exciting opportunities to explore the mechanisms underlying normal brain func tion as well as the affects of diseases such as epilepsy, sleep disorders, movement disorders, and cognitive disorders that affect millions of people every year. Ap plication of these powerful tools to the study of the human brain requires, by necessity, collaboration among scientists, engineers, neurobiologists and clini cians. Each discipline brings to the table unique knowledge, unique approaches to problem solving, and a unique language.
Download or read book An Introductory Course in Computational Neuroscience written by Paul Miller and published by MIT Press. This book was released on 2018-10-09 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.
Download or read book Computational Neuroscience for Advancing Artificial Intelligence Models Methods and Applications written by Alonso, Eduardo and published by IGI Global. This book was released on 2010-11-30 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book argues that computational models in behavioral neuroscience must be taken with caution, and advocates for the study of mathematical models of existing theories as complementary to neuro-psychological models and computational models"--
Download or read book Quantitative Methods in Neuroscience written by Stephen M. Evans and published by . This book was released on 2004 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stereology is a valuable tool for neuroscientists, allowing them to obtain 3-Dimensional information from 2-Dimensional measurements made on appropriately sampled sections (usually obtained from histological sections or MRI/CT/PET scans). This 3-D information is invaluable in correlatingstructural/functional relationships in the pursuit of far greater understanding of the function of the central nervous system. However, in carrying out such measurements, often based on limited data sets, there is a risk of experimenter bias. An important feature of modern design based stereology isto be aware of potential sources of bias and eliminate them during the data collection. With many of the major neuroscience journals now insisting that quantitative data be presented, there is a greater need than ever for neuroscientists to understand the theory and practice behind quantitativemethods, such as those offered by stereology. Quantitative Methods in Neuroscience is a cookbook of stereological methods written especially for neuroscientists. It provides clear and accessible advice about when and when not to use stereology. Throughout the book, the emphasis is on practical guidance, rather than discussions and formulae.Written by leading scientists in the field of stereology, with a Foreword by D.C. Sterio, the book will be a valuable introduction to these methods for neuroscientists, and all those involved in development of new drug programmes.
Download or read book Neural Engineering written by Chris Eliasmith and published by MIT Press. This book was released on 2003 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.
Download or read book Dynamical Systems in Neuroscience written by Eugene M. Izhikevich and published by MIT Press. This book was released on 2010-01-22 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Download or read book Computational Vision written by Hanspeter A. Mallot and published by MIT Press. This book was released on 2000 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an introduction to computational aspects of early vision, in particular, color, stereo, and visual navigation. It integrates approaches from psychophysics and quantitative neurobiology, as well as theories and algorithms from machine vision and photogrammetry. When presenting mathematical material, it uses detailed verbal descriptions and illustrations to clarify complex points. The text is suitable for upper-level students in neuroscience, biology, and psychology who have basic mathematical skills and are interested in studying the mathematical modeling of perception.
Download or read book Encyclopedia of Computational Neuroscience written by Dieter Jaeger and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Neuroscience written by Wanpracha Chaovalitwongse and published by Springer Science & Business Media. This book was released on 2010-07-03 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes contributions from diverse disciplines including electrical engineering, biomedical engineering, industrial engineering, and medicine, bridging a vital gap between the mathematical sciences and neuroscience research. Covering a wide range of research topics, this volume demonstrates how various methods from data mining, signal processing, optimization and cutting-edge medical techniques can be used to tackle the most challenging problems in modern neuroscience.
Download or read book Theoretical Neuroscience written by Peter Dayan and published by MIT Press. This book was released on 2005-08-12 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.
Download or read book Computational Neuroscience written by J.M. Bower and published by Elsevier. This book was released on 1999-07-08 with total page 1114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes papers originally presented at the 7th annual Computational Neuroscience Meeting (CNS'98) held in July of 1998 at the Fess Parker Doubletree Inn in Santa Barbara, California. The CNS meetings bring together computational neuroscientists representing many different fields and backgrounds as well as many different experimental preparations and theoretical approaches. The papers published here range from pure experimental neurobiology, to neuro-ethology, mathematics, physics, and engineering. In all cases the research described is focused on understanding how nervous systems compute. The actual subjects of the research include a highly diverse number of preparations, modeling approaches, and analysis techniques. Accordingly, this volume reflects the breadth and depth of current research in computational neuroscience taking place throughout the world.
Download or read book Computational Neuroscience written by James M. Bower and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 897 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes papers presented at the Fifth Annual Computational Neurosci ence meeting (CNS*96) held in Boston, Massachusetts, July 14 - 17, 1996. This collection includes 148 of the 234 papers presented at the meeting. Acceptance for mceting presenta tion was based on the peer review of preliminary papers originally submitted in May of 1996. The papers in this volume represent final versions of this work submitted in January of 1997. As represented by this volume, computational neuroscience continues to expand in quality, size and breadth of focus as increasing numbers of neuroscientists are taking a computational approach to understanding nervous system function. Defining computa tional neuroscience as the exploration of how brains compute, it is clear that there is al most no subject or area of modern neuroscience research that is not appropriate for computational studies. The CNS meetings as well as this volume reflect this scope and di versity.
Download or read book Computational Neuroscience written by Drozdstoy Stoyanov and published by Springer Nature. This book was released on 2023-05-10 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume looks at the latest advancements in imaging neuroscience methods using magnetic resonance imaging (MRI) and electroencephalography (EEG) to study the healthy and diseased brain. The chapters in this book are organized into five parts. Parts One and Two cover an introduction to this field and the latest use of molecular models. Part Three explores neurophysiological methods for assessment, such as quantitative EEG and event-related potentials. Part Four discusses the advances and innovations made in computational anatomy, and Part Five addresses the challenges faced by researchers prior to the computational neuroscience to find wider translational applications in the field of psychiatry and mental health. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Cutting-edge and comprehensive, Computational Neuroscience is a valuable tool for researchers in the psychiatry and mental health fields who want to learn more about ways to incorporate computational approaches into utility and validity of clinical methods.
Download or read book Computational Neuroscience written by Jianfeng Feng and published by CRC Press. This book was released on 2003-10-20 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: How does the brain work? After a century of research, we still lack a coherent view of how neurons process signals and control our activities. But as the field of computational neuroscience continues to evolve, we find that it provides a theoretical foundation and a set of technological approaches that can significantly enhance our understanding.
Download or read book Computational Neuroscience written by Erik De Schutter and published by CRC Press. This book was released on 2000-11-22 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed primarily as an introduction to realistic modeling methods, Computational Neuroscience: Realistic Modeling for Experimentalists focuses on methodological approaches, selecting appropriate methods, and identifying potential pitfalls. The author addresses varying levels of complexity, from molecular interactions within single neurons to the
Download or read book Computational Neuroscience and Cognitive Modelling written by Britt Anderson and published by SAGE. This book was released on 2014-01-08 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: "For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.