EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantitative Detection of Fluid Distribution Using Time lapse Seismic

Download or read book Quantitative Detection of Fluid Distribution Using Time lapse Seismic written by Futoshi Tsuneyama and published by . This book was released on 2005 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Detection of Production induced Time lapse Signatures by Geophysical  seismic and CSEM  Measurements

Download or read book Detection of Production induced Time lapse Signatures by Geophysical seismic and CSEM Measurements written by Alireza Shahin and published by . This book was released on 2011 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: While geophysical reservoir characterization has been an area of research for the last three decades, geophysical reservoir monitoring, time-lapse studies, have recently become an important geophysical application. Generally speaking, the main target is to detect, estimate, and discriminate the changes in subsurface rock properties due to production. This research develops various sensitivity and feasibility analyses to investigate the effects of production-induced time-lapse changes on geophysical measurements including seismic and controlled-source electromagnetic (CSEM) data. For doing so, a realistic reservoir model is numerically simulated based on a prograding near-shore sandstone reservoir. To account for the spatial distribution of petrophysical properties, an effective porosity model is first simulated by Gaussian geostatistics. Dispersed clay and dual water models are then efficiently combined with other well-known theoretical and experimental petrophysical correlations to consistently simulate reservoir model parameters. Next, the constructed reservoir model is subjected to numerical simulation of multi-phase fluid flow to replicate a waterflooding scenario of a black oil reservoir and to predict the spatial distributions of fluid pressure and saturation. A modified Archie's equation for shaly sandstones is utilized to simulate rock resistivity. Finally, a geologically consistent stress-sensitive rock physics model, combined with the modified Gassmann theory for shaly sandstones, is utilized to simulate seismic elastic parameters. As a result, the comprehensive petro-electro-elastic model developed in this dissertation can be efficiently utilized in sensitivity and feasibility analyses of seismic/CSEM data with respect to petrophysical properties and, ultimately, applied to reservoir characterization and monitoring research. Using the resistivity models, a base and two monitor time-lapse CSEM surveys are simulated via accurate numerical algorithms. 2.5D CSEM modeling demonstrates that a detectable time-lapse signal after 5 years and a strong time-lapse signal after 10 years of waterflooding are attainable with the careful application of currently available CSEM technology. To simulate seismic waves, I employ different seismic modeling algorithms, one-dimensional (1D) acoustic and elastic ray tracing, 1D full elastic reflectivity, 2D split-step Fourier plane-wave (SFPW), and 2D stagger grid explicit finite difference (FD). My analyses demonstrate that acoustic modeling of an elastic medium is a good approximation up to ray parameter (p) equal to 0.2 sec/km. However, at p=0.3 sec/km, differences between elastic and acoustic wave propagation is the more dominant effect compared to internal multiples. Here, converted waves are also generated with significant amplitudes compared to primaries and internal multiples. I also show that time-lapse modeling of the reservoir using SFPW approach is very fast compared to FD, 100 times faster for my case here. It is capable of handling higher frequencies than FD. It provides an accurate image of the waterflooding process comparable to FD. Consequently, it is a powerful alternative for time-lapse seismic modeling. I conclude that both seismic and CSEM data have adequate but different sensitivities to changes in reservoir properties and therefore have the potential to quantitatively map production-induced time-lapse changes.

Book Reservoir Characterization  Modeling and Quantitative Interpretation

Download or read book Reservoir Characterization Modeling and Quantitative Interpretation written by Shib Sankar Ganguli and published by Elsevier. This book was released on 2023-10-27 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir Characterization, Modeling and Quantitative Interpretation: Recent Workflows to Emerging Technologies offers a wide spectrum of reservoir characterization techniques and technologies, focusing on the latest breakthroughs and most efficient methodologies in hydrocarbon exploration and development. Topics covered include 4D seismic technologies, AVAz inversion, fracture characterization, multiscale imaging technologies, static and dynamic reservoir characterization, among others. The content is delivered through an inductive approach, which will help readers gain comprehensive insights on advanced practices and be able to relate them to other subareas of reservoir characterization, including CO2 storage and data-driven modeling. This will be especially useful for field scientists in collecting and analyzing field data, prospect evaluation, developing reservoir models, and adopting new technologies to mitigate exploration risk. They will be able to solve the practical and challenging problems faced in the field of reservoir characterization, as it will offer systematic industrial workflows covering every aspect of this branch of Earth Science, including subsurface geoscientific perspectives of carbon geosequestration. This resource is a 21st Century guide for exploration geologists, geoscience students at postgraduate level and above, and petrophysicists working in the oil and gas industry. - Covers the latest and most effective technologies in reservoir characterization, including Avo analysis, AVAz inversion, wave field separation and Machine Learning techniques - Provides a balanced blend of both theoretical and practical approaches for solving challenges in reservoir characterization - Includes detailed industry-standard practical workflows, along with code structures for algorithms and practice exercises

Book Fast History Matching of Time lapse Seismic and Production data for High Resolution Models

Download or read book Fast History Matching of Time lapse Seismic and Production data for High Resolution Models written by Alvaro Rey Amaya and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic data have been established as a valuable source of information for the construction of reservoir simulation models, most commonly for determination of the modeled geologic structure, and also for population of static petrophysical properties (e.g. porosity, permeability). More recently, the availability of repeated seismic surveys over the time scale of years (i.e., 4D seismic) has shown promising results for the qualitative determination of changes in fluid phase distributions and pressure required for determination of areas of bypassed oil, swept volumes and pressure maintenance mechanisms. Quantitatively, and currently the state of the art in reservoir model characterization, 4D seismic data have proven distinctively useful for the calibration of geologic spatial variability which ultimately contributes to the improvement of reservoir development and management strategies. Among the limited variety of techniques for the integration of dynamic seismic data into reservoir models, streamline-based techniques have been demonstrated as one of the more efficient approaches as a result of their analytical sensitivity formulations. Although streamline techniques have been used in the past to integrate time-lapse seismic attributes, the applications were limited to the simplified modeling scenarios of two-phase fluid flow and invariant streamline geometry throughout the production schedule. This research builds upon and advances existing approaches to streamline-based seismic data integration for the inclusion of both production and seismic data under varying field conditions. The proposed approach integrates data from reservoirs under active reservoir management and the corresponding simulation models can be constrained using highly detailed or realistic schedules. Fundamentally, a new derivation of seismic sensitivities is proposed that is able to represent a complex reservoir evolution between consecutive seismic surveys. The approach is further extended to manage compositional reservoir simulation with dissolution effects and gravity-convective-driven flows which, in particular, are typical of CO2 transport behavior following injection into deep saline aquifers. As a final component of this research, the benefits of dynamic data integration on the determination of swept and drained volumes by injection and production, respectively, are investigated. Several synthetic and field reservoir modeling scenarios are used for an extensive demonstration of the efficacy and practical feasibility of the proposed developments.

Book Fast History Matching of Time lapse Seismic and Production Data for High Resolution Models

Download or read book Fast History Matching of Time lapse Seismic and Production Data for High Resolution Models written by Eduardo Antonio Jimenez and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used extensively to demonstrate the value and contribution of this work. Our results show that the problem of non-uniqueness in this complex history matching problem is greatly reduced when constraints in the form of saturation maps from spatially closely sampled seismic data are included. Further on, our methodology can be used to quickly identify discrepancies between static and dynamic modeling. Reducing this gap will ensure robust and reliable models leading to accurate predictions and ultimately an optimum hydrocarbon extraction.

Book Practical Applications of Time lapse Seismic Data

Download or read book Practical Applications of Time lapse Seismic Data written by David H. Johnston and published by SEG Books. This book was released on 2013 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse (4D) seismic technology is a key enabler for improved hydrocarbon recovery and more cost-effective field operations. This book shows how 4D data are used for reservoir surveillance, add value to reservoir management, and provide valuable insight on dynamic reservoir properties such as fluid saturation, pressure, and temperature.

Book Geophysics and Geosequestration

Download or read book Geophysics and Geosequestration written by Thomas L. Davis and published by Cambridge University Press. This book was released on 2019-05-09 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.

Book Quantitative Monitoring of Gas Injection  Exsolution and Dissolution Using 4D Seismic

Download or read book Quantitative Monitoring of Gas Injection Exsolution and Dissolution Using 4D Seismic written by Reza Falahat and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The main concern in the monitoring of gas injection, exsolution and dissolution is the exact spatial distribution of the gas volumes in the subsurface. In principle, this concern is addressed by the use of 4D seismic data. However, it is recognised that the seismic response still largely provides a qualitative estimate of the moved subsurface fluids; exact quantitative evaluation of fluid distributions and associated saturations remains a challenge still to be solved. It is widely believed that a few percent of gas makes the pore fluid mixture very compressible, so that it cannot be distinguished from a more complete gas saturation using seismic techniques. However, because of the fact that a gas distribution viewed at the reservoir scale is distinctly different from that observed at the laboratory scale, conclusions from laboratory measurements may not, in fact, be wholly applicable. Indeed, it is found in this study that the main factor controlling the seismic response is gas thickness, whilst gas saturation per se remains approximately constant. Modelling studies show that, for thin reservoirs (less than tuning thickness), both timeshift and amplitude change attributes have a linear trend with gas volume. In theory, this conclusion does not apply to thick reservoirs, as the amplitude change then becomes non-linear. However, because thick reservoirs are normally combinations of intra reservoir sand and shale, it is anticipated that a linear amplitude response can still be expected in most reservoirs. Reservoir heterogeneity is observed to affect these results by less than 2%. In the modeling, a spurious deviation from linearity is evident with increasing simulation model cell size (especially the vertical dimension). The understanding above is applied to both timeshift and amplitude change attributes in a North Sea gas injection field. Here, seismic scale calibration coefficients are obtained by a volumetric method which aims to calculate gas volume maps using the 4D seismic attributes. The work reveals that the results from the two mapped attributes appear reasonably close but still have regions of disparity. Synthetic data based on the reservoir model and further analysis of the observed data have been able to replicate some of these differences and identify them as due to inter-layer wave interferences and 4D noise. Similar findings to the above also apply to gas exsolution, in which gas migrates after arriving at the critical gas saturation, and establishes two specific gas saturations in the ii reservoir: maximum gas saturation within the gas cap and critical or minimum gas saturation within the oil leg. On the other hand, for the reverse process, in which reservoir pressure builds up, it is noted that it is not only the fluid type that impacts the gas when it goes back into solution, but also other reservoir properties such as relative permeability curves, transmissibility, Kv/Kh, and the injection/production plan. The laboratory-proposed equations for calculation of solution gas oil ratio (Rs) and pressure dependency of the fluid and rock are found to be not directly valid in cases in which the reservoir pressure drops below the bubble point pressure. In this situation, gas evolves, migrates and alters the pressure dependency of the saturated rock and solution gas oil ratio. A compositional change of the gas and oil is found to occur with pressure drop. However, it is observed to have a negligible impact on the seismic domain. Finally, importance is drawn to the role of engineering principles when interpreting dynamic reservoir changes from 4D seismic data. In particular, it is found that, in clastic reservoirs, the principal parameters controlling mapped 4D signatures are not the pressure and saturation changes per se, but these changes scaled by the corresponding thickness (or pore volume) of the reservoir volume that these effects occupy. This understanding is validated both with numerical modelling and analytic calculation. This provides a basis for a linear equation that can readily and accurately be used to invert for pressure and saturation changes. The observed seismic data are then inverted for pressure and saturation changes using the principles above. The results show that the simulator does appear to predict the inverted seismic observations fairly accurately. However, there are also some noticeable differences which require some specific updates to the transmissibility multipliers (and hence barriers) and the net-to-gross distribution in the simulation model. This project reveals the ability of 4D seismic to quantitatively monitor the gas injection and exsolution, and highlights the fact that laboratory measures are not directly applicable at the reservoir scale. It can be concluded that the impact of the reservoir scale phenomena needs to be taken into account during time-lapse seismic interpretations.

Book Seismic Petrophysics in Quantitative Interpretation

Download or read book Seismic Petrophysics in Quantitative Interpretation written by Lev Vernik and published by SEG Books. This book was released on 2016-10-15 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploration and characterization of conventional and unconventional reservoirs using seismic technologies are among the main activities of upstream technology groups and business units of oil and gas operators. However, these activities frequently encounter difficulties in quantitative seismic interpretation due to remaining confusion and new challenges in the fast developing field of seismic petrophysics. Seismic Petrophysics in Quantitative Interpretation shows how seismic interpretation can be made simple and robust by integration of the rock physics principles with seismic and petrophysical attributes bearing on the properties of both conventional (thickness, net/gross, lithology, porosity, permeability, and saturation) and unconventional (thickness, lithology, organic richness, thermal maturity) reservoirs. Practical solutions to existing interpretation problems in rock physics-based amplitude versus offset (AVO) analysis and inversion are addressed in the book to streamline the workflows in subsurface characterization. Although the book is aimed at oil and gas industry professionals and academics concerned with utilization of seismic data in petroleum exploration and production, it could also prove helpful for geotechnical and completion engineers and drillers seeking to better understand how seismic and sonic data can be more thoroughly utilized.

Book Time lapse Seismic in Reservoir Management

Download or read book Time lapse Seismic in Reservoir Management written by Ian Jack and published by . This book was released on 1997 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantitative Seismic Interpretation

Download or read book Quantitative Seismic Interpretation written by Per Avseth and published by Cambridge University Press. This book was released on 2010-06-10 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Seismic Interpretation demonstrates how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes. The authors provide an integrated methodology and practical tools for quantitative interpretation, uncertainty assessment, and characterization of subsurface reservoirs using well-log and seismic data. They illustrate the advantages of these new methodologies, while providing advice about limitations of the methods and traditional pitfalls. This book is aimed at graduate students, academics and industry professionals working in the areas of petroleum geoscience and exploration seismology. It will also interest environmental geophysicists seeking a quantitative subsurface characterization from shallow seismic data. The book includes problem sets and a case-study, for which seismic and well-log data, and MATLAB® codes are provided on a website (http://www.cambridge.org/9780521151351). These resources will allow readers to gain a hands-on understanding of the methodologies.

Book Proceedings of the International Field Exploration and Development Conference 2022

Download or read book Proceedings of the International Field Exploration and Development Conference 2022 written by Jia'en Lin and published by Springer Nature. This book was released on 2023-08-05 with total page 7600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reservoir surveillance and management, reservoir evaluation and dynamic description, reservoir production stimulation and EOR, ultra-tight reservoir, unconventional oil and gas resources technology, oil and gas well production testing, and geomechanics. This book is a compilation of selected papers from the 12th International Field Exploration and Development Conference (IFEDC 2022). The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers, senior engineers as well as professional students.

Book Joint Integration of Time lapse Seismic  Electromagnetic and Production Data for Reservoir Monitoring and Management

Download or read book Joint Integration of Time lapse Seismic Electromagnetic and Production Data for Reservoir Monitoring and Management written by Jaehoon Lee and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Joint integration of time-lapse seismic, time-lapse electromagnetic, and production data can provide a powerful means of characterizing and monitoring reservoirs. Those data contain complementary information about the changes in the reservoir during operation, and, thus, their proper integration can lead to more reliable forecasts and optimal decisions in reservoir management. This dissertation focuses on developing workflows to jointly integrate time-lapse seismic, electromagnetic, and production data because this task is significantly time-consuming and very challenging. The first part of the thesis addresses a quick and efficient method, which can provide a tool for locating the changes in the reservoir and assessing the uncertainty associated with the estimation quantitatively. The developed workflow, termed statistical integration workflow, utilizes well logs to link reservoir properties with seismic and electromagnetic data by building the joint probability distribution. A new upscaling method from well logs to the scales of seismic and electromagnetic measurements is established using multiple-point geostatistical simulation. The statistical integration workflow is applied to facies classification and the detection of depleted regions. Stochastic optimization is also investigated in this dissertation. As the joint optimization of time-lapse seismic, electromagnetic, and production data requires a huge amount of computational time, we formulate a new algorithm, the probabilistic particle swarm optimization (Pro-PSO). This algorithm is designed to alleviate the time-consuming job by parallel computations of multiple candidate models and the improvement of models based on information sharing. More importantly, any probabilistic priors, such as geological information, can be incorporated into the algorithm. Applications are investigated for a synthetic example of seismic inversion and flow history matching of a Gaussian porosity field, parameterized by its spatial principal components. The result validates the effectiveness of Pro-PSO as compared with conventional PSO. Another version of Pro-PSO for discrete parameters, called Pro-DPSO, is also developed where particles (candidate models) move in the probability mass function space instead of the parameter space. Then, Pro-DPSO is hybridized with a multiple-point geostatistical algorithm, the single normal equation algorithm (SNESIM) to preserve non-Gaussian geological features. This hybridized algorithm (Pro-DPSO-SNESIM) is evaluated on a synthetic example of seismic inversion and compared with a Markov chain Monte Carlo (MCMC) optimization method. The algorithms Pro-DPSO and Pro-DPSO-SNESIM provide not only optimized models but also optimized probability mass functions (pmf) of parameters. Therefore, it also presents the variations of realizations sampled from the optimized pmfs. Lastly, we introduce the specialization workflow of Pro-PSO algorithms for the joint integration of time-lapse seismic, time-lapse electromagnetic, and production data. In this workflow, the particles of Pro-PSO are divided into several groups, and each group is specialized in the evaluation of a particular type of data misfit. Dividing up the objective function components among different groups of particles allows the algorithm to take advantage of situations where different forward simulators for each type of data require very different computational times per iteration. The optimization is implemented by sharing multiple best models from each type of data misfit, not by sharing a single best model based on the sum (or other combinations) of all the misfits. The "divide-and-conquer" workflow is evaluated on two synthetic cases of joint integration showing that it is much more efficient than an equivalent conventional workflow minimizing an integrated objective function.

Book Time lapse Seismic Monitoring of Subsurface Fluid Flow

Download or read book Time lapse Seismic Monitoring of Subsurface Fluid Flow written by Sung H. Yuh and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic properties of the reservoir. Time-lapse seismic analysis can illuminate these dynamic changes of reservoir properties, and therefore has strong potential for improving reservoir management. However, the response of a reservoir depends on many parameters and can be diffcult to understand and predict. Numerical modeling results integrating streamline fluid flow simulation, rock physics, and ray-Born seismic modeling address some of these problems. Calculations show that the sensitivity of amplitude changes to porosity depend on the type of sediment comprising the reservoir. For consolidated rock, high-porosity models show larger amplitude changes than low porosity models. However, in an unconsolidated formation, there is less consistent correlation between amplitude and porosity. The rapid time-lapse modeling schemes also allow statistical analysis of the uncertainty in seismic response associated with poorly known values of reservoir parameters such as permeability and dry bulk modulus. Results show that for permeability, the maximum uncertainties in time-lapse seismic signals occur at the water front, where saturation is most variable. For the dry bulk-modulus, the uncertainty is greatest near the injection well, where the maximum saturation changes occur. Time-lapse seismic methods can also be applied to monitor CO2 sequestration. Simulations show that since the acoustic properties of CO2 are very different from those of hydrocarbons and water, it is possible to image CO2 saturation using seismic monitoring. Furthermore, amplitude changes after supercritical fluid CO2 injection are larger than liquid CO2 injection. Two seismic surveys over Teal South Field, Eugene Island, Gulf of Mexico, were acquired at different times, and the numerical models provide important insights to understand changes in the reservoir. 4D seismic differences after cross-equalization show that amplitude dimming occurs in the northeast and brightening occurs in the southwest part of the field. Our forward model, which integrates production data, petrophysicals, and seismic wave propagation simulation, shows that the amplitude dimming and brightening can be explained by pore pressure drops and gas invasion, respectively.

Book Monitoring Fluid Injection Using Seismic Time lapse Analysis

Download or read book Monitoring Fluid Injection Using Seismic Time lapse Analysis written by Hannah Ng and published by . This book was released on 2005 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantitative Analysis of Geopressure for Geoscientists and Engineers

Download or read book Quantitative Analysis of Geopressure for Geoscientists and Engineers written by Nader C. Dutta and published by Cambridge University Press. This book was released on 2021-03-11 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the processes related to geopressure development, prediction and detection using state-of-the-art tools and technologies.

Book Numerical Modeling of Time lapse Seismic Data from Fractured Reservoirs Including Fluid Flow and Geochemical Processes

Download or read book Numerical Modeling of Time lapse Seismic Data from Fractured Reservoirs Including Fluid Flow and Geochemical Processes written by Ravi Shekhar and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractured reservoirs, especially in low permeable carbonate rocks, are important target for hydrocarbon exploration and production because fractures can control fluid flow inside the reservoir. Hence, quantitative knowledge of fracture attributes is important for optimal hydrocarbon production. However, in some cases fractures can cause leakage of injected CO2 during enhanced oil recovery (EOR) or CO2 sequestration. Furthermore, CO2 can geochemically interact with reservoir fluids and host rock. Hence, time-lapse monitoring of the progress of CO2 in fractured reservoirs is also very important. In order to address these challenges, I have developed an integrated approach for studying fluid flow and seismic wave propagation in fractured media using Discrete Fracture Network (DFN) models. My seismic simulation study suggests that CO2 saturated reservoir shows approximately ten times more attenuation than brine saturated reservoir. Similarly, large P-wave velocity variation in CO2 saturated reservoir and amplitude variation with offset (AVO) results for our example model predicts that CO2 is easier to detect than brine in the fractured reservoirs. The effects of geochemical processes on seismics are simulated by time-lapse modeling for t = 1000 years. My modeling study suggests that intra-aqueous reactions are more significant during injection of CO2 for t = 6 years, while slower mineral reactions dominate after pressure equilibrium is achieved that is from t = 6 to 1000 years. Overall both types of geochemical reactions cause change in reflection coefficient of 2 to 5%, which may be difficult to detect in some cases. However, the significant change in the seismic properties at the boundary of the CO2 front can be used to detect the flow path of CO2 inside the reservoirs. Finally, a method for generating stochastic fracture models was extended and improved to more realistic field model for seismic and fluid modeling. My detail analysis suggests that fractures generated by isotropic stress field favor orthogonal sets of fractures in most subsurface rocks that can be converted to seismic model, similar to DFN study. The quality and validity of the models is assessed by comparisons to DFN models, including calculations of fractal dimension measures that can help to characterize fractured reservoirs.